How should data on airborne transmission of SARS-CoV-2 change occupational health guidelines?

Sir,

On the 6th of April, the WHO provided guidance about personal protective equipment (PPE) for healthcare workers (HCWs) in healthcare settings areas that have reported cases of COVID-19, stating that HCWs working in settings where aerosol-generating procedures were performed should wear a particulate respirator (N95 or FFP2), whereas in their previous recommendations, such masks were restricted to those who actually performed such procedures. This is a step forward, although insufficient, towards the recognition of aerosol transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its consequences in terms of PPE choice.

COVID-19 has been considered as a droplet transmitted disease by WHO, which means that it can be prevented using surgical masks and hand hygiene. However, there is now increasing evidence suggesting that SARS-CoV-2 may also be found in droplet nuclei, defined by WHO as respiratory droplets smaller than 5 μm, which can travel on long distances and remain in suspension in the air for a long time.1 2

SARS-CoV-2 RNA is easily detected in nasopharyngeal swabs during the presymptomatic stage of the disease and asymptomatic patients may shed droplet nuclei that contain the virus. Two studies performed in medical units where patients with COVID-19 were hospitalised have found SARS-CoV-2 on surfaces and in the air of patients’ rooms, and even in the medical staff office, with peaks in the submicrometre size.2 3

Although it is widely acknowledged that the identification of viral RNA does not necessarily imply the presence of an infectious virus, experimental data have demonstrated that SARS-CoV-2 can survive in an aerosol for up to 3 hours.4

Furthermore, investigations of COVID-19 clusters in various environments such as restaurants, ships or buses have concluded that direct contact transmission was insufficient to explain all cases and that airborne transmission was likely. Indeed, the use of PPE and infection control training has been associated with decreased infection risk for HCWs.5 However, droplet and contact precautions have not been sufficient in many cases. A recent study on anaesthesiologists performing spinal anaesthesia showed that the use of category 3 PPE (including self-contained breathing apparatus) as defined by the EU Regulation 2016/425 reduced the risk of contamination by 95% compared with category 1 PPE (including surgical mask), which are known to offer little protection against droplet nuclei.6

Therefore, it is more and more challenging to rule out the risk of airborne transmission of COVID-19. Given the severity of the disease that is concerning HCWs more than any other occupational group, it seems reasonable to adjust occupational health guidelines.

Systematic use of N95 or FFP2 respirators should be discussed when caring for a patient with COVID-19, as a piece of a broader strategy that must include education, fit-checking, frequent hand hygiene, respiratory etiquette, organisational factors and engineering controls (maximising ventilation and avoiding recirculation). As many clusters have started in professional settings such as factories and have spread up in the communities, protecting workers against COVID-19 is of utmost importance for the public health response to the pandemic.

Jean François Gehanno,1,2 Vincent Bonneterre,3,4 Pascal Andujar,5,6,7 Jean-Claude Paireau,3,4,7 Christophe Paris,1,9 Audrey Petit,1,10 Catherine Verdun-Esquer,11 Alexis Descatha,1,12 Quentin V Durand-Moreau,1,13 Patrick Brochard1

1Department of occupational Medicine, Rouen University Hospital, Rouen, France
2Laboratoire d’informatique médicale et d’ingénierie des connaissances en e-santé, UMICS, Sorbonne Université, Inserm, université Paris 13, Paris, France
3TIMC Research Laboratory, Grenoble Alpes University, La Tronche cedex, France
4Occupational & Environmental Diseases Centre, Grenoble cedex 09, France
5Occupational and Environmental Diseases Centre, Grenoble cedex 09, France
6Service de Pneumologie et de Pathologie Professionnelle, Centre Hospitalier Intercommunal de Créteil, Créteil, France
7Faculte de Santé, Université Paris-Est Créteil, Créteil, France
8Service de pathologie professionnelle et de l’environnement, CHU Rennes, Rennes, France
9UMR_5108s Ester team, UNIV Angers, CHU Angers, Univ Rennes, Inserm, EHESS, Inser (Institut de recherche en santé, environnement et travail), Angers, France
10Department of Occupational Health, University Hospital of Angers, Angers, France
11CHU de Bordeaux, Bordeaux, France
12CAPTV CDC, CHU Angers Pôle A Vasculaire, Angers, France
13Division of Preventive Medicine, University of Alberta, Edmonton, Alberta, Canada

Contact details: Quentin V Durand-Moreau, quentin.durandmoreau@chu-poitou-charentes.fr

Correspondence to Professor Alexis Descatha, U1085 (Iriset) Ester, University of Angers, Angers 49000, France; Alexis.Descatha@inserm.fr

Twitter Quentin V Durand-Moreau @qudurandmoreau

Contributors All authors have participated in writing the letter and approved it.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; internally peer reviewed.

This article is made freely available for use in accordance with BMJ’s website terms and conditions for the duration of the covid-19 pandemic or until otherwise determined by BMJ. You may use, download and print the article for any lawful, non-commercial purpose (including text and data mining) provided that all copyright notices and trade marks are retained.

© Author(s) (or their employer(s)) 2020. No commercial re-use. See rights and permissions. Published by BMJ.

To cite Gehanno JF, Bonneterre V, Andujar P, et al. Occup Environ Med Epub ahead of print: [please include Day Month Year]. doi:10.1136/oemed-2020-106707

Received 15 May 2020
Revised 15 June 2020
Accepted 18 June 2020

Occup Environ Med 2020;0:0. doi:10.1136/oemed-2020-106707

ORCID ids
Vincent Bonneterre http://orcid.org/0000-0003-2353-7102
Alexis Descatha http://orcid.org/0000-0001-6028-3186
Quentin V Durand-Moreau http://orcid.org/0000-0003-1168-4201

REFERENCES