Methodological problems in a case-referent study based on a register of occupational asthma

Meredith et al. performed a case-referent study to investigate asthma caused by isocyanates. They claimed that the results indicated that isocyanate asthma occurs at low 8 hour average exposure (around 1.5 ppb); for exposures above 1.125 ppb there was about a threefold increased risk, however, this was of limited significance (odds ratio (OR)=3.2, 95% confidence interval (95% CI) 0.96 to 10.6; p=0.06). They concluded that their study, by contrast with other studies, had a higher risk of isocyanate asthma in smokers and people with atopy.

The study design is original as cases were recruited from a register of occupational asthma. A case-referent study based on a register of cases and both the disease and the exposure of interest is new. I think the design requires some discussion as it may introduce severe bias.

A typical case-referent study selects cases with a certain disease—for example, asthma—from a hospital register or in a population survey. The referents should be selected to give an unbiased estimate of frequency of exposure in the study base. The study base of a register, including cases of occupational isocyanate exposure, is the population that if the case had asthma would be reported to the register. Therefore, the authors of this study matched the referents to the cases by reporting doctor and factory or production area. Then they measured or estimated the exposure level for both cases and referents and found that the average 8 hour exposure was higher among cases. This design has certain weaknesses illustrated by the following hypothetical situations:

1. Assume that the exposure in the production area is homogenous. Then both cases and referents would have the same exposure and the conclusion would be that the risk was independent of exposure level.

2. Assume that the reporting doctor only knows a proportion of incidence cases, a reasonable assumption. If seeing the doctor is a risk factor in combination with the exposure and the conclusion would be that the lowest measured exposure obviously caused isocyanate asthma, increased at concentrations around 125 ppb, and is more common among people with atopy and smokers are questionable.

B Jarvholm
Department of Public Health and Clinical Medicine, Umea University, SE-901 85 Umea, Sweden;
bengt.jarvholm@envmed.umu.se

References

Authors’ reply
We are grateful to Jarvholm for his comments on our paper. The specified aim of our study was to quantify the relation between the level of occupational isocyanate exposure and risk of developing asthma. The usual approach to this problem is a cohort study in an exposed workforce, possibly with a nested case-referent analysis. A register based case referent study of the type described by Jarvholm would be unsuitable for this purpose because the source population would be ill defined, selection of a appropriate referents difficult, and reliable assessment of their exposure almost impossible. We used the SWORD reporting scheme, not as a register, but as a convenient means of identifying workplaces from which clusters of cases of asthma attributed to isocyanates have been observed. The exposure to isocyanates was assessed by an occupational hygienist; we then investigated those sites. A few additional cases were identified during the course of the investigation and were included in the analysis. In company A, where most of our cases worked, all employees were subject to close respiratory supervision throughout their employment, including pre-employment assessment; in company B, the occurrence of the cluster of cases was recognised by the occupational health department and the workers in the relevant areas investigated. We are therefore reasonably confident that no cases were missed.

We were careful to select referents from workers who were exposed to isocyanates and were under the same level of surveillance as the cases to avoid some of the biases outlined by Jarvholm. We agree that the close matching of cases and referents probably reduced the sensitivity of the study, but we thought that it was more important to do than that to risk selection bias as described in his second hypothetical scenario. As we also acknowledged in the article, we cannot exclude the theoretical possibility that the cases of asthma were not caused by isocyanates, but by other chemicals present in the plants. Confounding is a risk in any observational study, although not necessarily a source of bias, but the other agent would have to be closely correlated with the isocyanate exposure to account for our findings.

The cases had work related asthma as diagnosed by an occupational physician. Nearly all had a history of symptoms associated with work that improved days away from work and had had serial respiratory function tests that supported the diagnosis. Challenge tests and biologics are rarely used in the United Kingdom; very few centres undertake them, and without proper facilities are considered dangerous. However, as explained in the article, in company A people with respiratory symptoms were removed from exposure to isocyanates until they had recovered and then gradually returned to their previous work under very close supervision with serial respiratory function testing, which in practice was a form of challenge test.

The purpose of undertaking a case-referent study was not to establish that it is possible to develop isocyanate asthma at low exposures, but to examine the exposure-response relation. We do not conclude from our data that there is a threshold below which isocyanate exposure is safe. The concentration of 1.25 ppb was arbitrarily chosen because it was the median time weighted average exposure in the referent group in company A. Despite the fact that all estimated 8 hour time weighted average exposures were within the maximum exposure limits, those subjects whose estimated 8 hour time weighted average exposure was greater than 1.25 ppb seemed to be at increased risk of occupational asthma. However, the data were also compatible with a linear exposure-response relation in which the odds of asthma increased by 1.08 for every 0.1 ppb.
ppb. A much larger study would be needed to test these two possible exposure-response relations fully.

S Meredith
J Bugler
R Clark
MRC Clinical Trials Unit, 222 Euston Road, London NW1 2DA, UK

Correspondence to: Dr S Meredith, Department of Preventive Medicine, Vanderbilt University, Nashville, Tennessee 37232–2637, USA; sm5@ctu.mrc.ac.uk

Response to a case of occupational asthma due to the enzymes phytase and β-glucanase

In their recent short report, O’Connor et al describe a case of occupational asthma due to the enzymes phytase and β-glucanase. Their patient experienced asthma-like symptoms at work (wheezing and cough), had positive skin prick tests and specific IgE to both enzymes (by radioallergosorbent test), and reacted to both materials in separate inhalation challenge tests. None of 22 other employees in the same factory were reported to have experienced respiratory symptoms at work.1

In a German language paper presented at the 38th Annual Meeting of the German Association of Occupational and Environmental Medicine in 1998,2 we reported findings of a systematic clinical investigation of 49 research and development employees working with the enzymes phytase and xylanase. This investigation was undertaken after detecting airway sensitisation to dusts containing phytase in two analytical laboratory employees.

Forty nine employees with potential contact to the enzyme completed a questionnaire and underwent physical examination and lung function testing. Among 32 employees with findings of conjunctivitis, rhinitis, or bronchitis further immunological tests were undertaken on a voluntary basis (skin prick test, n=17; specific IgE by enzyme allergosorbent test (EAST); n=31). Also, nasal provocation challenge tests were performed in 13 employees, including all 11 with a positive skin prick test to phytase. Nine of these employees had a positive specific IgE test to phytase as well. All 11 had a positive nasal challenge response to phytase. The positive response rate was 62.5% among eight employees considered to have the highest potential exposure. Based on this investigation, it was concluded that phytase has a high sensitising potency. Our assessment of this is consistent with that of O’Connor et al and Doekes et al.3

After implementation of extensive control measures to prevent enzyme exposure in this research and development facility, all employees now report being free of work-related respiratory symptoms. This favourable experience agrees with the hypothesis that enzyme related asthma can be avoided by implementing best practice procedures for health surveillance and environmental control when working with enzymes.4

A Zober
K Strassburger
Ocational Medicine and Health Protection Department, BASF Aktiengesellschaft, D-67056 Ludwigshafen, Germany

X Baur
University of Hamburg 22083 Hamburg, Germany

Correspondence to: Professor A Zober andreas.zober@basf-ag.de

References

Nasal, eye, and skin irritation in dockyard painters

Chen et al report irritant symptoms experienced by dockyard painters in both Scotland and China.1 In 1985, I reported on painters involved in submarine refit work in one of Her Majesty’s dockyards in England. I too found a high prevalence of symptoms of irritation. However, and possibly of more concern, the painters in my study also reported narcotic symptoms. In 106 painters, 74 (70%) reported episodes of light headedness. Some 26 (28%) reported that, on occasion, this had led them to stop painting and seek fresh air. A solvent taste in the mouth was reported by 75 (71%). Some reported that their partners complained of a solvent smell to their breath persisting into the evening after a day shift.

The full face air fed masks then meant to be in use as respiratory protective equipment were considered to be bulky, uncomfortable, and to restrict vision. They were almost universally disliked; instead, some painters preferred to wear half face masks and tolerate eye irritation from the paint vapours, and for “touch ups” sometimes used no respiratory protection at all.

The messages were that painters, and perhaps their supervisors as well, needed to be reminded of the importance of narcotic symptoms: if a less potentially toxic paint system could not be found, additional consideration needed to be paid to ventilation and a search made for a more comfortable air fed mask.

My study predated both Control of Substances Hazardous to Health Regulations (COSHH)1 and Personal Protective Equipment at Work Regulations (PPE):1 one might have hoped that their principles and implementation would have led to fewer irritant symptoms than still apparently being experienced by the workers in the study of Chen et al. Finally, as well as the points in their paper, I would suggest occupational physicians with painters in their care remain vigilant for narcotic symptoms. There seems to remain scope for improved control.

G Woodroof
Occupational Health and Safety Unit, Derriford Hospital, Plymouth PL6 6DQ, UK; gerald.woodroof@phnt.swest.nhs.uk

References


In figures 1 and 2 the vertical axis in both of the lower graphs should be FVC.