Prevalence of back pain among fulltime United States workers

J P LEIGH,1,2 R M SHEETZ1

From the Department of Economics,1 San Jose State University, San Jose, CA 95192-0114, and Department of Medicine,2 HRP Building, Stanford University Medical Center, Stanford, CA 94035, and Deloitte, Haskins and Sells,3 Lexington, Kentucky, USA

ABSTRACT A source of data on the health and working conditions of a probability sample of United States workers, the Quality of Employment Survey for 1972–3 (QES73), is investigated for the first time to determine which groups of workers are more or are less likely to report back pain. Estimated coefficients from a logistic regression are used to calculate odds ratios and confidence intervals for various groups. Few previous studies on back pain among United States workers control for as many potentially confounding variables as are considered in this study and few use data from a national probability sample of workers. The following independent variables are judged to be important positive correlates based on their estimated odds ratios and confidence intervals: farm, service, blue collar, and clerical work; low levels of schooling and income; jobs needing physical effort; age between and including 50 to 64; and smoking. Marital separation was found to be negatively correlated with back pain. Caution should be exercised in attempting to generalise these findings, since the back pain variable is based on respondents’ subjective evaluations. Moreover, the variable does not distinguish between lower or upper back or neck pain, nor is information on the duration or frequency of pain available.

Back pain represents a significant problem for workers and employers1–13 and back injuries produce approximately 19–25.5% of all workers’ compensation claims.5,10 In addition to the severity of the problem, the burden of suffering from back pain is not equally shared by all workers. The greatest frequency for back pain among workers has been reported to occur between the ages of 35 and 55.4 No consensus has emerged concerning the relative risks faced by men versus women or blacks versus whites, yet workers’ compensation claims for back pain are more often filed by men than women.9 Workers found to be at greater risk for back pain include those who are tall, obese, divorced, separated or widowed, and who completed only a few years of schooling.4 Activities reported to be associated with increased risk of back pain include overexertion in association with lifting, bending, or pulling4,5,10; prolonged static work position4; and heavy physical labour.1 Readers seeking a comprehensive review of the epidemiology of back pain are referred to Kelsey.13

A recent review of back pain among employees by Anderson listed 136 studies, most of which were based on data from countries other than the United States.4 Whereas many epidemiological studies of back pain have relied on United States data, the data have typically been for the adult population at large, not just for working individuals. Moreover, a search did not find any United States study on workers which used a multivariate statistical design.

The present study contains results from a national sample of workers, widely used by economists and sociologists but not by epidemiologists. This study assesses the magnitude and distribution of self-reported prevalence of back pain among selected occupational groups. The following independent variables are considered as possible correlates of back pain: age, race, gender, income, schooling, marital status, height, weight, smoking status, occupation involving heavy labour or repetition, or both, and broad occupational groups.

Materials and methods

A national survey of the quality of employment (QES) was conducted in January and February 1973 by the

Accepted 26 September 1988
survey research center of the Institute for Social Research at the University of Michigan. The survey was directed by the Employment Standards Administration, United States Department of Labor, and the National Institute for Occupational Safety and Health, and was the second undertaken by the investigators to provide an overview of working conditions in the American labor force.

Details of the sample selection have been published. There were 1496 respondents from around the country, excluding Alaska and Hawaii. The requirements for respondent eligibility were that they be at least 16 years old and work for pay 20 or more hours a week. The sample was, therefore, not representative of all workers but only of those employed 20 or more hours a week. Information was sought about the impact of work on the worker in terms of such things as satisfaction, physical health, and financial well being. The data have been used by labour economists and industrial psychologists but, to date, have not been widely cited by epidemiologists. An exhaustive account of the rich detail available in the QES is available in Quinn et al.

Not all of the 1496 respondents are considered in the analysis that follows. Some 82 individuals are excluded due to missing data—for example, some individuals did not offer intelligible answers to some of the questions used in the subsequent analysis. The relevant sample size is thus reduced to 1414.

The back pain variable was constructed using answers to the following question: “Have you had trouble with your back or spine in the past year?” Two hundred and eight respondents answered “yes” and were given a one for the back pain variable; 1134 respondents answered “no” and were given a zero. The question contains limited information. It did not distinguish among upper or lower back or neck pain. Duration and frequency also are unknown.

It should first be pointed out that roughly 20% of the QES sample reported back pain. The 20% figure compares favourably with the 18% prevalence figures in the widely cited study by Nagi et al and the recent study by Reisbord and Greenland, thus lending credence to the accuracy of the responses in the QES.

Four variables appear in this study that were not considered by Reisbord and Greenland: height (tall), weight (obese), smoking (smoker), and repetitive-ness. The tall variable equalled one for men over 72 inches and women over 68 inches. Obese equalled one for those indicating they view themselves as being very much overweight, rather than just overweight. Smoker equalled one for current smoker. The obese and smoker variables are obviously deficient. Obese relies on a subjective evaluation and smoker lumps all smokers together whether they are light or heavy and whether they smoke cigarettes, pipes, or cigars. The variables are included in the analysis because weight and smoking habits have been found to be powerful risk factors in a variety of diseases. The job repetition variable equalled one for those stating that their job required “a lot” as opposed to a “moderate amount” or “only a little” repetition.

Two techniques were used to assess correlates of back pain. The first involves the presentation of descriptive statistics and calculation of chi-squares on the variables pertaining to gender, race, schooling, and so on. Simple associates were sought between, for example, sex and the prevalence of back pain without taking account of the types of jobs men and women have. The chi-squared analyses should be viewed as preliminary since they do not control for confounding variables.

To add additional insight into the correlates of back pain, a logistic regression was run on the data in which the binary variable back pain was treated as the dependent variable and sex, race, marital status, and so on were treated as independent variables. The independent variables are entered as binary variables, so that odd ratios may be calculated using estimated logistic coefficients.

The recent study by Reisbord and Greenland was used as our guide in specifying which independent variables should enter the equation. Virtually all of the variables they included in their study were included in ours. We go beyond Reisbord and Greenland in considering height and smoking as possible correlates of back pain.

There is some controversy surrounding the determination of which variables are important in a logistic regression. The traditional approach looks only at the p value for the coefficient. If the p value is equal to or less than 0.05 the variable is judged to be important by virtue of its statistical significance. Recent authors such as Gardner and Altman argue that the traditional view has three glaring weaknesses: (1) The selection of p < 0.05 is arbitrary. A coefficient estimate could yield a p = 0.08 but be automatically regarded as unimportant even though the estimate would produce an estimated odds ratio of, say, 5.0. (2) The traditional criteria ignore the mean estimated effect. Suppose the estimated odds ratio and p value for smoking are 4.0 and 0.04, respectively, and for male height over 72 inches and female height over 68 inches are 2.0 and 0.02, respectively. The traditional criteria, giving all the weight to the p value, would rank height over smoking as a risk factor. But clearly, the estimated odds ratio should matter since it is 4 for smokers but only 2 for men over 72 inches and women over 68 inches tall. (3) The problem of type 2 errors is treated too lightly. A decision rule based on p < 0.05 allows for a greater chance of a type 2 error than a rule based on, say, p ≤ 0.10. Physicians are often willing to risk
Predictors of back pain

high probability of a type 1 error if the patient's life is at stake.

Gardner and Altman argue that both the estimated size and precision of the odds ratio should matter. They point out that information about the precision of an estimate as measured by the standard errors is most usefully presented in a confidence interval rather than a p value. A confidence interval focuses attention on the estimated size of the odds ratio and the most reasonable range of estimates that should surround the true population odds ratio. They do not suggest any particular rule to assess the importance of an independent variable but note, however, that intervals with more values above than below 1 are more desirable than intervals with more values below 1 for variables assumed to be positively associated with the dependent variable. They also recognise that p values are not entirely useless since the smaller the p value, the less likely the interval will contain values below 1.

But a complete reliance on confidence intervals and odds ratios ignores the important question raised in a hypothesis test: Do the data suggest that the true population odds ratio is greater than one? Could the observed sample estimate of an odds ratio be greater than 1 simply as a matter of chance?

There does not yet appear to be a consensus among epidemiologists concerning which is the most appropriate criteria—p values, odds ratios, or confidence intervals. The methodological strategy used here, consequently, is to present information on all three and rely on our judgement to assess the most important correlates.

Stepwise regression is not relied on to determine whether an independent variable is important since stepwise regression, whether forward or backward, suffers two serious drawbacks identified by Cassidy, and Leigh: (1) the signs of the estimated coefficients at intermediate or final stages of the stepwise routine may be incorrect and (2) stepwise procedures may result in the exclusion of a relevant variable that was excluded just because of the arbitrary order in which the selection takes place (according to the contribution to the R² or the chi-square). Nevertheless, in results available from the authors, a forward stepwise procedure was run on the data and the results concerning the important correlates were not altered.

Results

The following table presents descriptive statistics and calculated chi-squares on selected variables, most of which were statistically significant, extracted from the QES. A larger version of table 1, available from the authors, indicates all variables whether or not they were statistically significant. The list of possible correlates automatically follows the list in Reisbord and Greenland except that the table 1 includes more than that of Reisbord and Greenland. The additional variables include measures of height (tall), weight (obese), information on the smoking habit (smoker), and information on repetitive nature of the job.

Table 1 shows some interesting patterns. Fewer than 1% more women than men report back pain in the QES sample, whereas 24-3% of non-whites, but only 19-4% of whites, report back pain. In part, the race disparity could be due to the disproportionate number of non-whites in production jobs and low schooling categories. Subjects who never married have the highest prevalence of back pain, whereas widowers (male and female) report the lowest in the marital status category. Although these results would not be

<table>
<thead>
<tr>
<th>Sex:</th>
<th>Total</th>
<th>Total (%)</th>
<th>Back pain</th>
<th>Back pain (%)</th>
<th>df</th>
<th>Chi squares</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>959</td>
<td>67.8</td>
<td>186</td>
<td>19.4</td>
<td>1</td>
<td>0.24</td>
</tr>
<tr>
<td>Female</td>
<td>455</td>
<td>32.2</td>
<td>94</td>
<td>20.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Race:</th>
<th>Total</th>
<th>Total (%)</th>
<th>Back pain</th>
<th>Back pain (%)</th>
<th>df</th>
<th>Chi squares</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>1262</td>
<td>89.3</td>
<td>245</td>
<td>19.4</td>
<td>1</td>
<td>2.15</td>
</tr>
<tr>
<td>Black/other</td>
<td>152</td>
<td>10.7</td>
<td>37</td>
<td>24.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Occupation:</th>
<th>Total</th>
<th>Total (%)</th>
<th>Back pain</th>
<th>Back pain (%)</th>
<th>df</th>
<th>Chi squares</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional</td>
<td>223</td>
<td>15.8</td>
<td>27</td>
<td>11.9</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Farmer/farm labourers</td>
<td>42</td>
<td>3.0</td>
<td>15</td>
<td>34.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manager</td>
<td>217</td>
<td>15.4</td>
<td>36</td>
<td>16.7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Clerical</td>
<td>208</td>
<td>14.7</td>
<td>30</td>
<td>14.7</td>
<td>9</td>
<td>34.16*</td>
</tr>
<tr>
<td>Sales</td>
<td>70</td>
<td>4.9</td>
<td>11</td>
<td>15.5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Craftsman</td>
<td>211</td>
<td>14.9</td>
<td>45</td>
<td>21.4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Operative</td>
<td>241</td>
<td>17.0</td>
<td>64</td>
<td>26.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private household</td>
<td>11</td>
<td>0.8</td>
<td>3</td>
<td>27.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service</td>
<td>138</td>
<td>9.8</td>
<td>37</td>
<td>27.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-farm labourers</td>
<td>53</td>
<td>3.7</td>
<td>12</td>
<td>23.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Education:</th>
<th>Total</th>
<th>Total (%)</th>
<th>Back pain</th>
<th>Back pain (%)</th>
<th>df</th>
<th>Chi squares</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 8 grades</td>
<td>169</td>
<td>12.0</td>
<td>52</td>
<td>30.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-11 grades</td>
<td>192</td>
<td>13.6</td>
<td>45</td>
<td>23.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 grades</td>
<td>538</td>
<td>38.0</td>
<td>104</td>
<td>19.3</td>
<td>3</td>
<td>21.77*</td>
</tr>
<tr>
<td>≥ 13 grades (trade school)</td>
<td>515</td>
<td>36.4</td>
<td>79</td>
<td>15.4</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Personal:</th>
<th>Total</th>
<th>Total (%)</th>
<th>Back pain</th>
<th>Back pain (%)</th>
<th>df</th>
<th>Chi squares</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current smoker = 1</td>
<td>706</td>
<td>49.9</td>
<td>159</td>
<td>22.5</td>
<td>1</td>
<td>6.36*</td>
</tr>
<tr>
<td>Non-smoker = 0</td>
<td>708</td>
<td>50.1</td>
<td>121</td>
<td>17.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions on job:</th>
<th>Total</th>
<th>Total (%)</th>
<th>Back pain</th>
<th>Back pain (%)</th>
<th>df</th>
<th>Chi squares</th>
</tr>
</thead>
<tbody>
<tr>
<td>Does require much physical effort = 1</td>
<td>371</td>
<td>26.2</td>
<td>101</td>
<td>27.2</td>
<td>1</td>
<td>20.00*</td>
</tr>
<tr>
<td>Does not = 0</td>
<td>1043</td>
<td>73.8</td>
<td>179</td>
<td>17.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Does require much repetitive work = 1</td>
<td>745</td>
<td>52.7</td>
<td>165</td>
<td>22.2</td>
<td>1</td>
<td>5.14*</td>
</tr>
<tr>
<td>Does not = 0</td>
<td>669</td>
<td>47.3</td>
<td>115</td>
<td>17.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*p < 0.05.
Results on marital status, age, income to respondent, obesity, and being tall are available from the authors.
expected in a sample including non-working and retired subjects, it could be that a self selection phenomena is at work. Widows who elect to work may be a particularly healthy group since many widows with children would receive social security benefits if their husbands had been working before death, as would be the case for most women in 1973.

Age categories provide clues for the prevalence of back pain. Whereas only a narrow (0-9) difference exists between the mean per cents for 18–34 years and 35–49 years, workers in the 50–64 years category suffer the most and in the 65 years and over category suffer the least. The patterns for the 50 and over groups are easily explained. The 50–64 category is the oldest category of workers in the preretirement years. Most of these workers, younger than 62, cannot retire with social security (unless they are disabled), and hence must work. They suffer a disproportionate amount of back pain because of their age. The 65 and over group are unique. Most, if not all, could retire with social security, but do not choose to. A strong healthy worker effect keeps their prevalence low. The age variable does not achieve statistical significance at the 0.05 level, perhaps due to the relatively few workers (33) in the 65 and over group.

There appears to be a negative association between income and back pain in the univariate results. The greatest per cent occurs in the $5000 or less group and the least in the over $20 000 group. In part, this result could reflect reverse causality. People with back pain may earn less because of their pain. Alternatively, it may be that the incomes reflect the jobs so that low income indirectly measures production work and high income, professional work. A multivariate design is, therefore, required to consider further the association between income and back pain.

QES respondents were asked to evaluate their own weight by stating whether they were obese, overweight, right weight for height, thin, or skinny. Roughly 1.7% stated that they were obese. A respondent’s actual weight, although preferred, was not recorded by QES interviewers. Because the obese variable relies on subjective evaluations, it is open to various criticisms so that results on the obese variable should be viewed with caution. It is used simply because it is the only measure of weight in the QES. For the 1.7%, obese = 1 and for the 98.3% obese = 0. Only a slight 1% difference in the prevalence of back pain was observed between the obese and the not obese groups.

The tall variable equalled 1 for men who stated that they were taller than 72 inches and 1 for women taller than 68 inches. Roughly 23% of tall people so classified reported back pain whereas 19.5% of “not tall” people reported back pain.

Whereas the descriptive results for the variables of sex through to obese and tall are suggestive they must nevertheless be critically viewed. None of the differences in variables mentioned, sex through to obese and tall, were statistically significant at the 0.05 level. Variables that did achieve statistical significance include occupation categories, education, smoking status, and conditions on the job.

It appears that white collar workers (professional managers, sales workers, and clerks) suffer less and blue collar workers (craftsmen, operatives, and labourers) and service workers more back pain. A pronounced education effect is also apparent. The fewer the years of schooling, the greater the chance of back pain complaints and the more the years of schooling, the less the chance of complaints. The smoker variable measured current smoking status. Smokers equalled 1 for people stating that they currently smoke and 0 otherwise. No QES information was available on quantity smoked. Being a smoker, however, may put workers at increased risk of back trouble.

The univariate results also suggest that both job conditions are associated with increased frequency of back pain. Employees in jobs requiring “lots of” physical effort and “lots of” repetitious work report more back pain than employees not holding jobs requiring physical effort and repetitious work.

As with all univariate analyses, the search for simple associations is limited. Multivariate analyses are required so that the effects of confounding are minimised.

LOGISTIC REGRESSION

Table 2 presents the results on estimated odds ratios and 95% confidence intervals derived from estimated coefficients and standard errors produced by a logistic regression explaining the log-of-the-odds of back pain. In the interest of brevity, table 2 presents only results on selected variables. Results on all the variables are available from the authors.

The chi-squared statistic from the logistic regression, 188, is greater than the critical chi-squared indicating that at least one of the explanatory variables is making a statistically significant contribution toward explaining prevalence of back pain.

Several interesting patterns emerge among the occupational categories, age, years of schooling, and annual wages. Estimated odds ratios are smallest for occupations most similar to professionals and managers and largest for occupations least similar to professionals and managers. The estimated odds ratios for clerical and sales workers are only 1.38 whereas ratios for service workers are 2.67; craftsmen, operatives, and labourers 2.39; and farmers and farm workers 5.17.

The age pattern appears to be an upside-down “U"
Predictors of back pain

Table 2 Logistic regression results explaining the probability of reporting back pain

<table>
<thead>
<tr>
<th>Explanatory variables</th>
<th>Estimated coefficient (asymptotic standard error)</th>
<th>Odds ratios (95% confidence intervals)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-4.154 (0.5333)</td>
<td>1.21 (0.74-1.98)</td>
</tr>
<tr>
<td>Female compared with male</td>
<td>0.1915 (0.2521)</td>
<td>1.21 (0.64-2.28)</td>
</tr>
<tr>
<td>Non-white compared with white</td>
<td>0.1895 (0.3273)</td>
<td>1.21 (0.64-2.28)</td>
</tr>
<tr>
<td>Clerical or sales worker compared with professionals and managers</td>
<td>0.3288 (0.6072)</td>
<td>1.21 (0.64-2.28)</td>
</tr>
<tr>
<td>Craftsmen or operative or labourer compared with professionals and managers</td>
<td>0.9325 (0.3854)</td>
<td>2.67 (1.26-5.69)</td>
</tr>
<tr>
<td>Service workers compared with professionals and managers</td>
<td>1.435* (0.672)</td>
<td>5.17 (1.57-17.01)</td>
</tr>
</tbody>
</table>

Omitted category is professionals and managers

Schooling:
- 8 grades or fewer compared with 13 grades or more
- 9-11 grades compared with 13 grades or more
- 12 grades compared with 13 grades or more

Omitted schooling category: 13 grades or more

- Tall = 1 if male height is 72" or female height 68" compared with not tall
- Current smoker compared with non-smoker
- Physical effort = 1 if respondent states job requires much physical effort compared with does not require
- Repetitious work = 1 if respondent states job requires much repetitious work compared with does not require

Sample size
- 1414
- -2 (log of likelihood)
- 188.4619
- 37.6525

*Significant at the 0.05 level in a two tailed test.

Results on marital status, age, income to respondent, obesity, are available from the authors.

The ratios range from 1-00 for 35-49 to 1-59 for 50-64 and fall to 0.96 for 65 and over.

Back pain appears to be inversely related to years of schooling. The eight grades or fewer odds ratio is 2.18, whereas 9-11 grades drop to 1.45 and 12 grades to 1.05.

The annual wage pattern is not as clear as the others. The ratios rise from 1.41 for $5000 or less to 2.04 for $5000-$10 000 but fall to 1.90 for the $10 001-$20 000 category.

To assess the most versus least important correlates of back pain, the variables with the highest odds ratio and largest lower confidence interval were selected for further scrutiny.

To assess the importance of each possible correlate, the variables were placed into two groups depending on their estimated odds ratio and the size of their lower confidence limit. Variables with large odds ratios and large lower limits were judged more likely to be important and those with small odds ratios and small lower limits were judged to be less likely important correlates of back pain. The size of the odds ratios matters, as Gardner and Altman suggest. The size of the lower limit matters because the larger the lower limit, the greater the p value.

The variables thus classified as unlikely to have an association with back pain and their corresponding lower confidence limits (in parentheses) are the following: sex (0.74), race (0.64), divorced (0.30), widowed (0.54), never married (0.20), age 35-49 (0.62), age 65 and over (0.24), 12 years of schooling (0.65), $5000 or less in annual wages (0.47), obese (0.21), and repetitious work (0.79).

The variables more likely to be associated with back pain include those with lower confidence limits either a little below or greater than one. The potentially important variables may be ranked according to their estimated odds ratios as follows (lower confidence limits in parentheses): (1) farmer and farm labourers (1.57); (2) service workers (1.26); (3) craftsmen, operatives, or labourers (1.09); (4) eight or fewer years of schooling (1.09); (5) $5000-10 000 annual wages (0.72); (6) $10 001-20 000 annual wages (0.70); (7) job needing much physical effort (1.05); (8) men taller than 72 inches and women than 68 inches (0.85); (9) aged 50-64 (0.92); (10) smokers (1.00); (11) 9-11 years of schooling (0.75); (12) clerical or sales workers (0.85).

The separated marital status category is also included in the potentially important group but its estimated coefficient is negative, hence its lower confidence limit and odds ratio cannot be compared with the other variables.

Discussion

In agreement with the results of Reisbord and Greenland’s multivariate study we do not find a likely effect for sex or race since neither variable is in the “more likely” group. This is in contrast with the univariate analyses in Nagi et al in which sex and race were important correlates. It is tempting to conclude that...
in univariate analyses sex and race variables were actually serving as proxies for employment status or schooling.

Again, as do Reisbord and Greenland and Nagi et al, we find weak multivariate and univariate associations between marital status and back pain.18 Estimated odds ratios and prevalence proportions are less for divorced and separated individuals when compared with single people, widows, and widowers. The importance of occupation is strongly confirmed by the results in table 2. When compared with professionals and managers (1) craftsmen, operatives, and labourers, (2) service workers, (3) clerks and salespeople, and especially (4) farmers and farm workers, have significantly higher prevalence odds of back pain. The results for the disparity between blue and white collar work are consistent with those reported by Frymoyer et al2 and Andersson.4 Moreover, with the exception of the clerks and salespeople category, every other occupation category has a lower 95% confidence limit for the odds ratio greater than one.

The results for the occupation categories may reflect a causal relation. Blue collar work requires lifting, bending, pulling, and heavy physical labour, all of which have been identified as risk factors for back pain.2, 4-6 White collar work may put less physical strain on the back.

The results for age and schooling are consistent with those in Reisbord and Greenland.18 People in the preretirement years, 50–64, suffer more back pain, other things being equal, than those aged 18 to 34. Whereas most studies find that advancing years beyond 65 is associated with back pain, no association is found here. A simple healthy worker argument will explain this anomaly, however. People in the QES sample over 65 are full time employees. Most people older than 65 are retired. Individuals who choose to work beyond 65 are probably healthy and unlikely to suffer back pain.

The results for schooling are consistent with those published concerning the association between schooling and overall health. Grossman24 and Leigh,25 for example, find strong statistical associations between schooling and subjective measures of general health in two data sets drawn from national probability samples. Increased educational attainment was found to be associated with better health. The results in table 2 indicate a similar finding. Since the omitted category is 13 or more years of schooling, positive coefficients on the three schooling variables indicate that fewer than 13 years of schooling is associated with greater prevalence of back pain. Moreover, the size of the odds ratios drop from 2.18 for eight grades or fewer to 1.05 for 12 grades, again consistent with a positive relation between schooling and overall health. Whereas only the first schooling variable, eight grades or fewer, is statistically significant at better than the 0.05 level in a one tailed test, the lower confidence intervals for 9–11 grades and 12 grades are 0.75 and 0.65, not far below 1.

The QES data do not suggest any statistically significant correlation at the 0.05 level between wage levels and odds prevalence of back pain, again consistent with Reisbord and Greenland.18 But two categories of wages, $5001–$10 000 and $10 000–$20 000 were in the "more likely" group of possible correlates. The results suggest that people with the greatest earnings, $20 000 or more (in 1973), experienced less back pain than those in all other income categories. In part, this could reflect reverse causality. People who suffer severe pain may not be able to work as many hours as those who suffer no pain.

The lack of a statistically significant effect for the obese variable is, at first sight, surprising, since many prior studies implicate obesity as a risk factor for back pain.4 But the lack of any finding present in the QES may result from the variable's construction. The obese variable is constructed from the subjective evaluations of the respondent's weight by the respondent. Individual variation in what respondents regarded as obese resulted in a small sample size problem. Only 2836 respondents in the sample of 1414 reported themselves to be obese.

The apparent lack of height as a statistically significant variable at the 0.05 level was also unexpected. But closer examination shows that the asymptotic statistic for height, 1.469, is statistically significant at the 0.10 level in a one tailed test (critical p is 1.28). If the 0.10 level is viewed as statistically significant these results for the height variable are consistent with those reported in Andersson's review of studies on back pain among workers.4

Smokers apparently report more back pain than non-smokers as the statistically significant coefficient (p < 0.05) on smoker = 1 shows in table 2. The results are consistent with those found in Frymoyer et al.23, 24 It is not clear what the causal mechanism might be linking smoking with back pain. A misplaced cigarette might require additional reaching and stooping that would otherwise occur. The correlation may also result from some unobserved third variable reflecting a desire to practise healthy habits. People who smoke may be more reckless with their health than non-smokers. Smokers may be more inclined than non-smokers to lift things with their backs rather than their legs, for example.

The interpretation of the results for jobs needing physical effort and involving repetitious work require an understanding of the variable construction. If the respondent stated "lots of" physical effort demand, he or she received a 1 for the physical effort variable. The repetitious job variable was similarly constructed.
Predictors of back pain

Thus we expected a positive coefficient on both variables since physical effort and repetitious jobs have been found to be associated with prevalence of back pain for workers. Our results do not support any strong statistical association (p < 0.05) between repetitious work and prevalence odds of back pain. Nevertheless, the estimated odds ratio is greater than 1 and the lower confidence interval is 0.75. Strong statistical evidence is provided, however, for a physical effort and back pain association. The physical effort variable is significant at the 0.05 level in a two tailed test and has the expected positive sign. Moreover, the estimated odds ratio is reasonably large—1.68.

We would like to express our appreciation to Lorann Stallones, Sander Greenland, and Lesley Reisbord for helpful suggestions. This project was supported by grant number ROI OHO2586 from the National Institute for Occupational Safety and Health.

Requests for reprints to: J Paul Leigh, Department of Economics, San Jose State University, San Jose, CA 95192-0114.

References