Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Daily mortality and particulate matter in different size classes in Erfurt, Germany

Abstract

The link between elevated concentrations of ambient particulate matter (PM) and increased mortality has been investigated in numerous studies. Here we analyzed the role of different particle size fractions with respect to total and cardio-respiratory mortality in Erfurt, Germany, between 1995 and 2001.

Number concentrations (NC) of PM were measured using an aerosol spectrometer consisting of a Differential Mobility Particle Sizer and a Laser Aerosol Spectrometer to characterize particles between 0.01 and 0.5 and between 0.1 and 2.5 μm, respectively. We derived daily means of particle NC for ultrafine (0.01–0.1 μm) and for fine particles (0.01–2.5 μm). Assuming spherical particles of a constant density, we estimated the mass concentrations (MC) of particles in these size ranges. Concurrently, data on daily total and cardio-respiratory death counts were obtained from local health authorities. The data were analyzed using Poisson Generalized Additive Models adjusting for trend, seasonality, influenza epidemics, day of the week, and meteorology using smooth functions or indicator variables. We found statistically significant associations between elevated ultrafine particle (UFP; diameter: 0.01–0.1 μm) NC and total as well as cardio-respiratory mortality, each with a 4 days lag. The relative mortality risk (RR) for a 9748 cm−3 increase in UFP NC was RR=1.029 and its 95% confidence interval (CI)=1.003–1.055 for total mortality. For cardio-respiratory mortality we found: RR=1.031, 95% CI: 1.003–1.060. No association between fine particle MC and mortality was found.

This study shows that UFP, representing fresh combustion particles, may be an important component of urban air pollution associated with health effects.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Aalto P., Hämeri K., Paatero P., Kulmala M., Bellander T., Berglind N., et al. Aerosol particle number concentration measurements in five European cities using TSI-3022 condensation particle counter over a three-year period during health effects of air pollution on susceptible subpopulations. J Air Waste Manag Assoc 2005: 55: 1064–1076.

    Article  CAS  Google Scholar 

  • AGI Arbeitsgemeinschaft Influenza. 2003. available: http://influenza.rki.de/agi/index.html(accessed November 2003).

  • Brand P., Ruoss K., and Gebhart J. Technical note: performance of a mobile aerosol spectrometer for in situ characterization of an environmental aerosol in Frankfurt city. Atmos Environ 1992: 26A: 2451–2457.

    Article  CAS  Google Scholar 

  • Brook R.D., Brook J.R., Urch B., Vincent R., Rajagopalan S., and Silverman F. Inhalation of fine particulate air pollution and ozone causes acute arterial vasoconstriction in healthy adults. Circulation 2002: 105: 1534–1536.

    Article  CAS  Google Scholar 

  • Buzorius G., Hämeri K., Pekkanen J., and Kulmala M. Spatial variation of aerosol number concentration in Helsinki city. Atmos Environ 1999: 33 (4): 553–565.

    Article  CAS  Google Scholar 

  • Clancy L., Goodman P., Sinclair H., and Dockery D.W. Effect of air-pollution control on death rates in Dublin, Ireland: an intervention study. Lancet 2002: 360: 1210–1214.

    Article  Google Scholar 

  • Cyrys J., Heinrich J., Brauer M., and Wichmann H.E. Spatial variability of acidic aerosols, sulfate and PM10 in Erfurt, Eastern Germany. J Expos Anal Environ Epidemiol 1998: 8: 447–464.

    CAS  Google Scholar 

  • Devlin R.B., Ghio A.J., Kehrl H., Sanders G., and Cascio W. Elderly humans exposed to concentrated air pollution particles have decreased heart rate variability. Eur Respir J 2003: 21 (Suppl 40): 76S–80S.

    Article  CAS  Google Scholar 

  • D'Ippoliti D., Forastiere F., Ancona C., Agabiti N., Fusco D., Michelozzi P., et al. Air pollution and myocardial infarction in Rome: a case-crossover analysis. Epidemiology 2003: 14 (5): 528–535.

    Article  Google Scholar 

  • Dominici F., McDermott A., Daniels M., Zeger S.L., and Samet J.M. Revised analyses of the National Morbidity, Mortality, and Air Pollution Study: mortality among residents of 90 cities. J Toxicol Environ Health A 2005: 68 (13–14): 1071–1092.

    Article  CAS  Google Scholar 

  • Dominici F., McDermott A., Zeger S.L., and Samet J.M. On the use of generalized additive models in time-series studies of air pollution and health. Am J Epidemiol 2002: 156 (3): 193–203.

    Article  Google Scholar 

  • Dominici F., Peng R.D., Bell M.L., Pham L., McDermott A., Zeger S.L., et al. Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA 2006: 295: 1127–1134.

    Article  CAS  Google Scholar 

  • Donaldson K., Stone V., Seaton A., and MacNee W. Ambient particle inhalation and the cardiovascular system: potential mechanisms. Environ Health Perspect 2001: 109 (Suppl 4): 523–527.

    Article  CAS  Google Scholar 

  • Ebelt S.T., Wilson W.E., and Brauer M. Exposure to ambient and nonambient components of particulate matter. A comparison of health effects. Epidemiology 2005: 16: 396–405.

    Article  Google Scholar 

  • Forastiere F., Stafoggia M., Picciotto S., Bellander T., D'Ippoliti D., Lanki T., et al. A case-crossover analysis of out-of-hospital coronary deaths and air pollution in Rome, Italy. Am J Respir Crit Care Med 2005: 172 (12): 1549–1555.

    Article  Google Scholar 

  • Frampton M.W. Systemic and cardiovascular effects of airway injury and inflammation: ultrafine particle exposure in humans. Environ Health Perspect 2001: 109 (Suppl 4): 529–532.

    Article  CAS  Google Scholar 

  • Gold D.R., Litonjua A., Schwartz J., Lovett E., Larson A., Nearing B., et al. Ambient pollution and heart rate variability. Circulation 2000: 101: 1267–1273.

    Article  CAS  Google Scholar 

  • Hastie T.J., and Tibshirani R.J. Generalized Additive Models. Chapman & Hall, London, Glasgow, Weinheim, New York, Tokyo, Melbourne, Madras, 1990.

    Google Scholar 

  • Health Effects Institute. Revised Analyses of Time-Series Studies of Air Pollution and Health. Special Report, Health Effects Institute, Boston, MA, 2003.

  • Henneberger A., Zareba W., Ibald-Mulli A., Rückerl R., Cyrys J., Couderc J.P., Mykins B., Wölke G., Wichmann H.E., and Peters A. Repolarization changes induced by air pollution in ischemic heart disease patients. Environ Health Perspect 2005: 113 (4): 440–446.

    Article  CAS  Google Scholar 

  • Ibald-Mulli A., Stieber J., Wichmann H.E., Koenig W., and Peters A. Effects of air pollution on blood pressure: a population-based approach. Am J Public Health 2001: 91 (9): 1345–1346.

    Article  Google Scholar 

  • Ibald-Mulli A., Wichmann H.E., Kreyling W., and Peters A. Epidemiological evidence on health effects of ultrafine particles. J Aerosol Med 2002: 15: 189–201.

    Article  CAS  Google Scholar 

  • International Commission on Radiological Protection. Human Respiratory Tract Model for Radiological Protection. Annals of the ICRP 1994: 24 (1–3): 1–482.

  • Katsouyanni K., Touloumi G., Samoli E., Gryparis A., Le Tetre A., Monopolis Y., et al. Confounding and effect modification in the short-term effects of ambient particles on total mortality: results from 29 European cities within the APHEA2 project. Epidemiology 2001: 12 (5): 521–531.

    Article  CAS  Google Scholar 

  • Katsouyanni K., Touloumi G., Samoli E., Gryparis A., Monopolis Y., Le Tertre A., et al. Different convergence parameters applied to the S-Plus GAM function. Epidemiology 2002: 13 (6): 742.

    Article  Google Scholar 

  • Kreyling W.G., Semmler M., and Möller W. Dosimetry and toxicology of ultrafine particles. J Aerosol Med 2004: 17 (2): 140–152.

    Article  CAS  Google Scholar 

  • Le Tertre A., Medina S., Samoli E., Forsberg B., Michelozzi P., Boumghar A., et al. Short term effects of particulate air pollution on cardiovascular diseases in eight European cities. J Epidemiol Commun Health 2002: 56 (10): 773–779.

    Article  CAS  Google Scholar 

  • Oberdörster G., Gelain R.M., Ferin J., and Weiss B. Association of particulate air pollution and acute mortality: involvement of ultrafine particles? Inhal Toxicol 1995: 7: 111–124.

    Article  Google Scholar 

  • Oberdörster G. Pulmonary effects of inhaled ultrafine particles. Int Arch Occup Environ Health 2001: 74 (1): 1–8.

    Article  Google Scholar 

  • Ostro B., Broadwin R., Green S., Feng W.Y., and Lipsett M. Fine particulate air pollution and mortality in nine California counties: results from CALFINE. Environ Health Perspect 2006: 114 (1): 29–33.

    Article  Google Scholar 

  • Pekkanen J., Timonen K.L., Ruuskanen J., Reponen A., and Mirme A. Effects of ultrafine and fine particles in an urban air on peak expiratory flow among children with asthmatic symptoms. Environ Res 1997: 74: 24–33.

    Article  CAS  Google Scholar 

  • Penttinen P., Timonen K.L., Tiittanen P., Mirme A., Ruuskanen J., and Pekkanen J. Ultrafine particles in urban air and respiratory health among adult asthmatics. Eur Respir J 2001: 17 (3): 428–435.

    Article  CAS  Google Scholar 

  • Peters A., Dockery D.W., Muller J.E., and Mittleman M.A. Increased particulate air pollution and the triggering of myocardial infarction. Circulation 2001: 103: 2810–2815.

    Article  CAS  Google Scholar 

  • Peters A., Döring A., Wichmann H.E., and Koenig W. Increased plasma viscosity during an air pollution episode: a link to mortality? Lancet 1997a: 349: 1582–1587.

    Article  CAS  Google Scholar 

  • Peters A., Liu E., Verrier R.L., Schwartz J., Gold D.R., Mittleman M., et al. Air pollution and incidence of cardiac arrythmia. Epidemiology 2000: 11: 11–17.

    Article  CAS  Google Scholar 

  • Peters A., Perz S., Doring A., Stieber J., Koenig W., and Wichmann H.E. Increases in heart rate during an air pollution episode. Am J Epidemiol 1999: 150 (10): 1094–1098.

    Article  CAS  Google Scholar 

  • Peters A., Wichmann H.E., Tuch T., Heinrich J., and Heyder J. Respiratory effects are associated with the number of ultra-fine particles. Am J Respir Crit Care Med 1997b: 155: 1376–1383.

    Article  CAS  Google Scholar 

  • Pope C.A., and Dockery D.W. Epidemiology of particle effects. In: Holgate S.T., Samet J.M., Koren H.S., and Maynard R.L. (Eds.). Air Pollution and Health. Academic Press, San Diego, London, Boston, New York, Sydney, Tokyo, Toronto, 1999, pp. 673–705.

    Chapter  Google Scholar 

  • Pope C.A., and Schwartz J. Time series for the analysis of pulmonary health data. Am J Respir Crit Care Med 1996: 154: 5229–5233.

    Article  Google Scholar 

  • R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2003.

  • Ramsay T.O., Burnett R.T., and Krewski D. The effect of concurvity in generalized additive models linking air pollution to particulate matter. Epidemiology 2003: 14: 18–23.

    Article  Google Scholar 

  • Rückerl R., Ibald-Mulli A., Koenig W., Schneider A., Woelke G., Cyrys J., et al. Air pollution and markers of inflammation and coagulation in patients with coronary heart disease. Am J Respir Crit Care Med 2006: 173: 432–441.

    Article  Google Scholar 

  • Samet J.M., Dominici F., Curriero F., Coursac I., and Zeger S.L. Fine particulate air pollution and mortality in 20 U.S. cities, 1987–1994. N Engl J Med 2000: 343: 1742–1749.

    Article  CAS  Google Scholar 

  • Samoli E., Aga E., Touloumi G., Nisiotis K., Forsberg B., Lefranc A., et al. Short-term effects of nitrogen dioxide on mortality: an analysis within the APHEA project. Eur Respir J 2006: 27: 1129–1138.

    Article  CAS  Google Scholar 

  • Schulz H., Harder V., Ibald-Mulli A., Khanoga A., Koenig W., Krombach F., et al. Cardiovascular effects of fine and ultrafine particles. J Aerosol Med 2005: 18 (1): 1–22.

    Article  CAS  Google Scholar 

  • Schwartz J. Air pollution and hospital admissions for heart disease in eight U.S. counties. Epidemiology 1999: 10: 17–22.

    Article  CAS  Google Scholar 

  • Schwartz J. The distributed lag between air pollution and daily deaths. Epidemiology 2000: 11: 320–326.

    Article  CAS  Google Scholar 

  • Schwartz J., Dockery D.W., and Neas L.M. Is daily mortality associated specifically with fine particles? J Air Waste Manag Assoc 1996: 46: 927–939.

    Article  CAS  Google Scholar 

  • Seaton A., MacNee W., Donaldson K., and Godden D. Particulate air pollution and acute health effects. Lancet 1995: 345: 176–178.

    Article  CAS  Google Scholar 

  • Stölzel M., Peters A., and Wichmann H.E. Daily mortality and fine and ultrafine particles in Erfurt, Germany. In: Health Effects Institute: Revised Analyses of Time-Series Studies of Air Pollution and Health. Special Report. Boston, MA: Health Effects Institute, 2003, pp. 231–240.

    Google Scholar 

  • Touloumi G., Atkinson R., Le Tetre A., Samoli E., Schwartz J., Schindler C., et al. Analysis of health outcome time series data in epidemiological studies. Environmetrics 2004: 15 (2): 101–117.

    Article  CAS  Google Scholar 

  • Tuch T., Brand P., Wichmann H.E., and Heyder J. Variation of particle number and mass concentration in various size ranges of ambient aerosols in Eastern Germany. Atmos Environ 1997: 31: 4193–4197.

    Article  CAS  Google Scholar 

  • Tuch T., Mirme A., Tamm E., Heinrich J., Heyder J., Brand P., et al. Comparison of two particle-size spectrometers for ambient aerosol measurements. Atmos Environ 2000: 33: 139–149.

    Article  Google Scholar 

  • Utell M.J., and Frampton M.W. Acute health effects of ambient air pollution: the ultrafine particle hypothesis. J Aerosol Med 2000: 13 (4): 355–359.

    Article  CAS  Google Scholar 

  • von Klot S., Peters A., Aalto P., Bellander T., Berglind N., D́Ippoliti D., et al. Ambient air pollution is associated with increased risk of hospital cardiac readmissions of myocardial survivors in five European cities. Circulation 2005: 112: 3073–3079.

    Article  CAS  Google Scholar 

  • von Klot S., Wölke G., Tuch T., Heinrich J., Dockery D.W., Schwartz J., et al. Increased asthma medication use in association with ambient fine and ultrafine particles. Eur Respir J 2002: 20 (3): 691–702.

    Article  CAS  Google Scholar 

  • Wichmann H.E., and Peters A. Epidemiological evidence of the effects of ultrafine particle exposure. Philos Transact R Soc Lond A 2000: 358: 2751–2769.

    Article  CAS  Google Scholar 

  • Wichmann H.E., Spix C., Tuch T., Wölke G., Peters A., Heinrich J., et al. Daily mortality and fine and ultrafine particles in Erfurt, Germany. Part i, role of particle number and particle mass. Report 98. Health Effects Institute, Cambridge, Massachusetts, 2000.

  • Zanobetti A., Schwartz J., and Dockery D.W. Airborne particles are a risk factor for hospital admissions for heart and lung disease. Environ Health Perspect 2000: 108 (11): 1071–1077.

    Article  CAS  Google Scholar 

  • Zeger S.L., Thomas D., Dominici F., Samet J.M., Schwartz J., Dockery D., et al. Exposure measurement error in time-series studies of air pollution: concepts and consequences. Environ Health Perspect 2000: 108: 419–426.

    Article  CAS  Google Scholar 

  • Zeka A., Zanobetti A., and Schwartz J. Short term effects of particulate matter on cause specific mortality: effects of lags and modification by city characteristics. Occup Environ Med 2005: 62 (10): 718–725.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Focus-Network on Aerosols and Health coordinates and focuses all GSF research on health effects and the characterization of aerosols. It comprises research projects of the GSF Institutes of Ecological Chemistry, Epidemiology, Inhalation Biology, Radiation Protection, and Toxicology at GSF. This study was in parts supported by the Health Effects Institute (Boston, MA, USA), an organization jointly funded by the US Environmental Protection Agency (EPA) (Assistance Agreement R82811201) and automotive manufacturers. The contents of this article do not necessarily reflect the views and policies of EPA, or motor vehicle and engine manufacturers. A. Peters and H.-E. Wichmann were in parts supported by the Rochester Particle Center funded by the National Center for Environmental Research (NCER) STAR Program of the US EPA, Grant R827354.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Breitner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stölzel, M., Breitner, S., Cyrys, J. et al. Daily mortality and particulate matter in different size classes in Erfurt, Germany. J Expo Sci Environ Epidemiol 17, 458–467 (2007). https://doi.org/10.1038/sj.jes.7500538

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.jes.7500538

Keywords

This article is cited by

Search

Quick links