Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

The comet assay: a method to measure DNA damage in individual cells

Abstract

We present a procedure for the comet assay, a gel electrophoresis–based method that can be used to measure DNA damage in individual eukaryotic cells. It is versatile, relatively simple to perform and sensitive. Although most investigations make use of its ability to measure DNA single-strand breaks, modifications to the method allow detection of DNA double-strand breaks, cross-links, base damage and apoptotic nuclei. The limit of sensitivity is approximately 50 strand breaks per diploid mammalian cell. DNA damage and its repair in single-cell suspensions prepared from yeast, protozoa, plants, invertebrates and mammals can also be studied using this assay. Originally developed to measure variation in DNA damage and repair capacity within a population of mammalian cells, applications of the comet assay now range from human and sentinel animal biomonitoring (e.g., DNA damage in earthworms crawling through toxic waste sites) to measurement of DNA damage in specific genomic sequences. This protocol can be completed in fewer than 24 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Typical dose response relationships for human cells exposed to ionizing radiation using the two methods described in this protocol.

Similar content being viewed by others

References

  1. Ostling, O. & Johanson, K.J. Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem. Biophys. Res. Commun. 123, 291–298 (1984).

    Article  CAS  PubMed  Google Scholar 

  2. Singh, N.P., McCoy, M.T., Tice, R.R. & Schneider, E.L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 175, 184–191 (1988).

    Article  CAS  Google Scholar 

  3. Rydberg, B. The rate of strand separation in alkali of DNA of irradiated mammalian cells. Radiat. Res. 61, 274–287 (1975).

    Article  CAS  PubMed  Google Scholar 

  4. Kohn, K.W. & Grimek-Ewig, R.A. Alkaline elution analysis, a new approach to the study of DNA single-strand interruptions in cells. Cancer Res. 33, 1849–1853 (1973).

    CAS  PubMed  Google Scholar 

  5. Olive, P.L. Cell proliferation as a requirement for development of the contact effect in Chinese hamster V79 spheroids. Radiat. Res. 117, 79–92 (1989).

    Article  CAS  PubMed  Google Scholar 

  6. Olive, P.L., Banáth, J.P. & Durand, R.E. Heterogeneity in radiation-induced DNA damage and repair in tumor and normal cells measured using the “comet” assay. Radiat. Res. 122, 86–94 (1990).

  7. Fairbairn, D.W., Olive, P.L. & O'Neill, K.L. The comet assay: a comprehensive review. Mutat. Res. 339, 37–59 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Salagovic, J., Gilles, J., Verschaeve, L. & Kalina, I. The comet assay for the detection of genotoxic damage in the earthworms: a promising tool for assessing the biological hazards of polluted sites. Folia Biol. (Praha.) 42, 17–21 (1996).

    CAS  Google Scholar 

  9. Moller, P. Genotoxicity of environmental agents assessed by the alkaline comet assay. Basic Clin. Pharmacol. Toxicol. 96 (Suppl. 1), 1–42 (2005).

    CAS  PubMed  Google Scholar 

  10. Kiskinis, E., Suter, W. & Hartmann, A. High-throughput Comet assay using 96-well plates. Mutagenesis 17, 37–43 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Frieauff, W., Hartmann, A. & Suter, W. Automatic analysis of slides processed in the Comet assay. Mutagenesis 16, 133–137 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Tice, R.R. et al. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ. Mol. Mutagen. 35, 206–221 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Bauch, T., Bocker, W., Mallek, U., Muller, W.U. & Streffer, C. Optimization and standardization of the “comet assay” for analyzing the repair of DNA damage in cells. Strahlenther. Onkol. 175, 333–340 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Banath, J.P., Kim, A. & Olive, P.L. Overnight lysis improves the efficiency of detection of DNA damage in the alkaline comet assay. Radiat. Res. 155, 564–571 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Olive, P.L., Wlodek, D. & Banáth, J.P. DNA double-strand breaks measured in individual cells subjected to gel electrophoresis. Cancer Res. 51, 4671–4676 (1991).

    CAS  PubMed  Google Scholar 

  16. Collins, A.R., Duthie, S.J. & Dobson, V.L. Direct enzymic detection of endogenous oxidative base damage in human lymphocyte DNA. Carcinogen. 14, 1733–1735 (1993).

    Article  CAS  Google Scholar 

  17. Merk, O. & Speit, G. Detection of crosslinks with the comet assay in relationship to genotoxicity and cytotoxicity. Environ. Mol. Mutagen. 33, 167–172 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Olive, P.L., Frazer, G. &p Banáth, J.P. Radiation-induced apoptosis measured in TK6 human B lymphoblast cells using the comet assay. Radiat. Res. 136, 130–136 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Ostling, O. & Johanson, K.J. Bleomycin, in contrast to gamma irradiation, induces extreme variation of DNA strand breakage from cell to cell. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 52, 683–691 (1987).

    Article  CAS  PubMed  Google Scholar 

  20. Olive, P.L., Johnston, P.J., Banáth, J.P. & Durand, R.E. The comet assay: A new method to examine heterogeneity associated with solid tumors. Nat. Med. 4, 103–105 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Olive, P.L., Durand, R.E., LeRiche, J.C., Olivotto, I.A. & Jackson, S.M. Gel electrophoresis of individual cells to quantify hypoxic fraction in human breast cancers. Cancer Res. 53, 733–736 (1993).

    CAS  PubMed  Google Scholar 

  22. Olive, P.L. & Banáth, J.P. Multicell spheroid response to drugs predicted with the comet assay. Cancer Res. 57, 5528–5533 (1997).

    CAS  PubMed  Google Scholar 

  23. Almeida, G.M., Duarte, T.L., Steward, W.P. & Jones, G.D. Detection of oxaliplatin-induced DNA crosslinks in vitro and in cancer patients using the alkaline comet assay. DNA Repair (Amst.) 5, 219–225 (2006).

    Article  CAS  Google Scholar 

  24. Olive, P.L. et al. The comet assay in clinical practice. Acta Oncol. 38, 839–844 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Dorie, M.J. et al. DNA damage measured by the comet assay in head and neck cancer patients treated with tirapazamine. Neoplasia. 1, 461–467 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Speit, G. & Hartmann, A. The comet assay: a sensitive genotoxicity test for the detection of DNA damage. Methods Mol. Biol. 291, 85–95 (2005).

    CAS  PubMed  Google Scholar 

  27. Strauss, G.H., Peters, W.P. & Everson, R.B. Measuring DNA damage in individual cells of heterogeneous mixtures: a novel application of an immunological typing technique. Mutat. Res. 304, 211–216 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Santos, S.J., Singh, N.P. & Natarajan, A.T. Fluorescence in situ hybridization with comets. Exp. Cell Res. 232, 407–411 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Rapp, A., Hausmann, M. & Greulich, K.O. The comet-FISH technique: a tool for detection of specific DNA damage and repair. Methods Mol. Biol. 291, 107–119 (2005).

    CAS  PubMed  Google Scholar 

  30. Speit, G. & Hartmann, A. The comet assay: a sensitive genotoxicity test for the detection of DNA damage. Methods Mol. Biol. 291, 85–95 (2005).

    CAS  PubMed  Google Scholar 

  31. Hartmann, A. et al. Recommendations for conducting the in vivo alkaline Comet assay. 4th International Comet Assay Workshop. Mutagenesis 18, 45–51 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Albertini, R.J. et al. IPCS guidelines for the monitoring of genotoxic effects of carcinogens in humans. International Programme on Chemical Safety. Mutat. Res. 463, 111–172 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Duez, P., Dehon, G., Kumps, A. & Dubois, J. Statistics of the Comet assay: a key to discriminate between genotoxic effects. Mutagenesis 18, 159–166 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Verde, P.E. et al. Application of public-domain statistical analysis software for evaluation and comparison of comet assay data. Mutat. Res. 604, 71–82 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Olive, P.L. & Durand, R.E. Heterogeneity in DNA damage using the comet assay. Cytometry A 66, 1–8 (2005).

    Article  PubMed  Google Scholar 

  36. Olive, P.L. & Johnston, P.J. DNA damage from oxidants: influence of lesion complexity and chromatin organization. Oncol. Res. 9, 287–294 (1997).

    CAS  PubMed  Google Scholar 

  37. Sasaki, Y.F. et al. The comet assay with multiple mouse organs: comparison of comet assay results and carcinogenicity with 208 chemicals selected from the IARC monographs and U.S. NTP Carcinogenicity Database. Crit. Rev. Toxicol. 30, 629–799 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Cedervall, B. et al. Methods for the quantification of DNA double-strand breaks determined from the distribution of DNA fragment sizes measured by pulsed-field gel electrophoresis. Radiat. Res. 143, 8–16 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Olive, P.L. DNA damage and repair in individual cells: applications of the comet assay in radiobiology. Int. J. Radiat. Biol. 75, 395–405 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Speit, G. & Hartmann, A. The contribution of excision repair to the DNA effects seen in the alkaline single cell gel test (comet assay). Mutagenesis 10, 555–559 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Alapetite, C., Wachter, T., Sage, E. & Moustacchi, E. Use of the alkaline comet assay to detect DNA repair deficiencies in human fibroblasts exposed to UVC, UVB, UVA and γ rays. Int. J. Radiat. Biol. 69, 359–369 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Rydberg, B. Radiation-induced heat-labile sites that convert into DNA double-strand breaks. Radiat. Res. 153, 805–812 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Collins, A.R. The comet assay for DNA damage and repair: principles, applications, and limitations. Mol. Biotechnol. 26, 249–261 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Olive, P.L., Banáth, J.P. & Fjell, C.D. DNA strand breakage and DNA structure influence staining with propidium iodide using the alkaline comet assay. Cytometry 16, 305–312 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Durand for developing the first comet analysis software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peggy L Olive.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olive, P., Banáth, J. The comet assay: a method to measure DNA damage in individual cells. Nat Protoc 1, 23–29 (2006). https://doi.org/10.1038/nprot.2006.5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.5

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing