Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Human methylenetetrahydrofolate reductase: isolation of cDNA, mapping and mutation identification

An Erratum to this article was published on 01 August 1994

Abstract

Methylenetetrahydrofolate reductase (MTHFR) catalyses the reduction of methylenetetrahydrofolate to methyltetrahydrofolate, a cofactor for homocysteine methylation to methionine. MTHFR deficiency, an autosomal recessive disorder, results in homocysteinemia. Using degenerate oligonucleotides based on porcine peptide sequence data, we isolated a 90–bp cDNA by PCR from pig liver RNA. This cDNA was used to isolate a human cDNA, the predicted amino acid sequence of which shows strong homology to porcine MTHFR and to bacterial metF genes. The human gene has been localized to chromosome 1p36.3. Two mutations were identified in MTHFR–deficient patients: a missense mutation (Arg to Gin), in a residue conserved in bacterial enzymes, and a nonsense mutation (Arg to Ter).

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Daubner, S.C. & Matthews, R.G. Purification and properties of methylenetetrahydrofolate reductase from pig liver. J. biol. Chem. 257, 140–145 (1982).

    CAS  PubMed  Google Scholar 

  2. Matthews, R.G., Vanoni, M.A., Hainfeld, J.F. & Wall, J. Methylenetetrahydrofolate reductase. Evidence for spatially distinct subunit domains obtained by scanning transmission electron microscopy and limited proteolysis. J. biol. Chem. 259, 11647–11650 (1984).

    CAS  PubMed  Google Scholar 

  3. Sumner, J., Jencks, D.A., Khani, S. & Matthews, R.G. Photoaffinity labeling of methylenetetrahydrofolate reductase with 8-azido-S-adenosylmethionine. J. biol. Chem. 261, 7697–7700 (1986).

    CAS  PubMed  Google Scholar 

  4. Rosenblatt, D.S. Inherited disorders of folate transport and metabolism. in The Metabolic Basis of Inherited Disease (eds Scriver, C.R., Beaudet, A.L., Sly, W.S. & Valle, D.) 2049–2064 (McGraw-Hill, New York, 1989).

    Google Scholar 

  5. Rosenblatt, D.S., Lue-Shing, H., Arzoumanian, A., Low-Nang, L. & Matiaszuk, N. Methylenetetrahydrofolate reductase (MR) deficiency: Thermolability of residual MR activity, methionine synthase activity, and methylcobalamin levels in cultured fibroblasts. Biochem. Med. metab. Biol. 47, 221–225 (1992).

    Article  CAS  Google Scholar 

  6. Haworth, J.C. et al. Symptomatic and asymptomatic methylenetetrahydrofolate reductase deficiency in two adult brothers. Am. J. med. Genet. 45, 572–576 (1993).

    Article  CAS  Google Scholar 

  7. Kang, S.-S. et al. Thermolabile methylenetetrahydrofolate reductase: An inherited risk factor for coronary artery disease. Am. J. hum. Genet. 48, 536–545 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Saint-Girons, I. et al. Nucleotide sequence of metF, the E. coli structural gene for 5-10 methylenetetrahydrofolate reductase and of its control region. Nucl. Acids Res. 11, 6723–6732 (1983).

    Article  CAS  Google Scholar 

  9. Matthews, R.G. Methylenetetrahydrofolate reductase from pig liver. Meth. Enzymol. 122, 372–381 (1986).

    Article  CAS  Google Scholar 

  10. Stauffer, G.V. & Stauffer, L.T. Cloning and nucleotide sequence of the Salmonella typhimurium LT2 metF gene and its homology with the corresponding sequence of Escherichia coli. Molec. Gen. Genet. 212, 246–251 (1988).

    Article  CAS  Google Scholar 

  11. Yang, E. & Friedberg, E.G. Molecular cloning and nucleotide sequence analysis of the Saccaromyces cerevisiae RAD1 gene. Molec. Cell Biol. 4, 2161–2169 (1984).

    Article  CAS  Google Scholar 

  12. Orita, M., Suzuki, Y., Sekiya, T. & Hayashi, K. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5, 8874–8879 (1989).

    Article  Google Scholar 

  13. Katzen, H.M. & Buchanan, J.M. Enzymatic synthesis of the methyl group of methionine VIII. Repression-derepression, purification and properties of 5,10-methylenetetrahydrofolate reductase from Escherichia coli. J. biol. Chem. 240, 825–835 (1965).

    CAS  PubMed  Google Scholar 

  14. Kutzbach, C. & Stokstad, E.L.R. Mammalian methylenetetrahydrofolate reductase. Partial purification, properties, and inhibition by S-adenosylmethionine. Biochim. Biophys. Acta 250, 459–577 (1971).

    Article  CAS  Google Scholar 

  15. Zhou, J., Kang, S.-S., Wong, P.W.K., Fournier, B. & Rozen, R. Partial Purification and characterization of methylenetetrahydrofolate reductase from human cadaver liver. Biochem. Med. metab. Biol. 43, 234–242 (1990).

    Article  CAS  Google Scholar 

  16. Branden, C. & Tooze, J. in Introduction to Protein Structure (Garland Publishing, New York, 1991).

    Google Scholar 

  17. Kang, S.-S., Wong, P.W.K., Bock, H.-G., O., Horwitz, A. & Grix, A. Intermediate hyperhomocysteinemia resulting from compound heterozygosity of methylenetetrahydrofolate reductase mutations. Am. J. hum. Genet. 48, 546–551 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Boers, G.H.J. et al. Heterozygosity for homocystinuria in premature peripheral and cerebral occlusive arterial disease. New Engl. J. Med. 313, 709–715 (1985).

    Article  CAS  Google Scholar 

  19. Clarke, R. et al. Homocysteinemia: an independent risk factor for vascular disease. New Engl. J. Med. 324, 1149–1155 (1991).

    Article  CAS  Google Scholar 

  20. Som, S. & Friedman, S. Direct photolabelling of the EcoRll methyltransferase with S-adenosyl-L-methionine. J. biol. Chem. 265, 4278–4283 (1990).

    CAS  PubMed  Google Scholar 

  21. Harper, M.E. & Saunders, G.F. Localization of single copy DNA sequences on G-banded human chromosomes by in situ hybridization. Chromosome 83, 431–439 (1981).

    Article  CAS  Google Scholar 

  22. Lin, C.C., Draper, P.N. & De Braekeleer, M. High resolution chromosomal localization of the b gene of the human β globin gene complex by in situ hybridization. Cytogenet. Cell Genet. 39, 269–274 (1985).

    Article  CAS  Google Scholar 

  23. Dockhorn-Dworniczak, B. et al. Non-isotopic detection of single strand conformation polymorphism (PCR-SSCP): a rapid and sensitive technique in diagnosis of phenylketonuria. Nucl. Acids Res. 19, 2500 (1991).

    Article  CAS  Google Scholar 

  24. Rozen, R., Fox, J., Fenton, W.A., Horwich, A.L. & Rosenberg, L.E. Gene deletion and restriction fragment length polymorphisms at the human ornithine transcarbamylase locus. Nature 313, 815–817 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goyette, P., Sumner, J., Milos, R. et al. Human methylenetetrahydrofolate reductase: isolation of cDNA, mapping and mutation identification. Nat Genet 7, 195–200 (1994). https://doi.org/10.1038/ng0694-195

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0694-195

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing