Skip to main content

Advertisement

Log in

Particle exposures and infections

  • Review
  • Published:
Infection Aims and scope Submit manuscript

Abstract

Particle exposures increase the risk for human infections. Particles can deposit in the nose, pharynx, larynx, trachea, bronchi, and distal lung and, accordingly, the respiratory tract is the system most frequently infected after such exposure; however, meningitis also occurs. Cigarette smoking, burning of biomass, dust storms, mining, agricultural work, environmental tobacco smoke (ETS), wood stoves, traffic-related emissions, gas stoves, and ambient air pollution are all particle-related exposures associated with an increased risk for respiratory infections. In addition, cigarette smoking, burning of biomass, dust storms, mining, and ETS can result in an elevated risk for tuberculosis, atypical mycobacterial infections, and meningitis. One of the mechanisms for particle-related infections includes an accumulation of iron by surface functional groups of particulate matter (PM). Since elevations in metal availability are common to every particle exposure, all PM potentially contributes to these infections. Therefore, exposures to wood stove emissions, diesel exhaust, and air pollution particles are predicted to increase the incidence and prevalence of tuberculosis, atypical mycobacterial infections, and meningitis, albeit these elevations are likely to be small and detectable only in large population studies. Since iron accumulation correlates with the presence of surface functional groups and dependent metal coordination by the PM, the risk for infection continues as long as the particle is retained. Subsequently, it is expected that the cessation of exposure will diminish, but not totally reverse, the elevated risk for infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pabst M, Hofer F. Deposits of different origin in the lungs of the 5,300-year-old Tyrolean Iceman. Am J Phys Anthropol. 1998;107:1–12. doi:10.1002/(SICI)1096-8644(199809)107:1<1:AID-AJPA1>3.0.CO;2-R.

    CAS  PubMed  Google Scholar 

  2. World Health Organization (WHO). The global burden of disease: 2004 update. 2008. p. 1–146.

  3. National Research Council. Environmental tobacco smoke: measuring exposures and assessing health effects. Washington: National Academy Press; 1986.

    Google Scholar 

  4. Baker RR. Smoke chemistry. In: Davis DL, Nielsen MT, editors. Tobacco: production, chemistry and technology. Oxford: Blackwell Science; 2000. p. 398–439.

    Google Scholar 

  5. Smith KR, Samet JM, Romieu I, Bruce N. Indoor air pollution in developing countries and acute lower respiratory infections in children. Thorax. 2000;55:518–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Naeher LP, Leaderer BP, Smith KR. Particulate matter and carbon monoxide in highland Guatemala: indoor and outdoor levels from traditional and improved wood stoves and gas stoves. Indoor Air. 2000;10:200–5.

    CAS  PubMed  Google Scholar 

  7. Smith KR. Fuel combustion, air pollution exposure, and health: the situation in developing countries. Annu Rev Energy Environ. 1993;18:529–66.

    Google Scholar 

  8. Ezzati M, Kammen D. Indoor air pollution from biomass combustion and acute respiratory infections in Kenya: an exposure–response study. Lancet. 2001;358:619–24.

    CAS  PubMed  Google Scholar 

  9. Prospero JM, Ginoux P, Torres O, Nicholson SE, Gill TE. Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev Geophys. 2002;40:2-1–2-31.

    Google Scholar 

  10. Song Z, Wang J, Wang S. Quantitative classification of northeast Asian dust events. J Geophys Res. 2007;112:D04211.

    Google Scholar 

  11. Prospero JM. Long-range transport of mineral dust in the global atmosphere: impact of African dust on the environment of the southeastern United States. Proc Natl Acad Sci USA. 1999;96:3396–403.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Schenker M. Exposures and health effects from inorganic agricultural dusts. Environ Health Perspect. 2000;108:661–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Naeher LP, Brauer M, Lipsett M, Zelikoff JT, Simpson CD, Koenig JQ, Smith KR. Woodsmoke health effects: a review. Inhal Toxicol. 2007;19:67–106. doi:10.1080/08958370600985875.

    CAS  PubMed  Google Scholar 

  14. Kocbach Bølling A, Pagels J, Yttri KE, Barregard L, Sallsten G, Schwarze PE, Boman C. Health effects of residential wood smoke particles: the importance of combustion conditions and physicochemical particle properties. Part Fibre Toxicol. 2009;6:29. doi:10.1186/1743-8977-6-29.

    PubMed Central  PubMed  Google Scholar 

  15. Larson TV, Koenig JQ. Wood smoke: emissions and noncancer respiratory effects. Annu Rev Public Health. 1994;15:133–56. doi:10.1146/annurev.pu.15.050194.001025.

    CAS  PubMed  Google Scholar 

  16. Tesfaigzi Y, Singh SP, Foster JE, Kubatko J, Barr EB, Fine PM, McDonald JD, Hahn FF, Mauderly JL. Health effects of subchronic exposure to low levels of wood smoke in rats. Toxicol Sci. 2002;65:115–25.

    CAS  PubMed  Google Scholar 

  17. Borrego C, Valente J, Carvalho A, Sá E, Lopes M, Miranda AI. Contribution of residential wood combustion to PM10 levels in Portugal. Atmos Environ. 2010;44:642–51.

    CAS  Google Scholar 

  18. Hammond SK, Leaderer BP. A diffusion monitor to measure exposure to passive smoking. Environ Sci Technol. 1987;21:494–7. doi:10.1021/es00159a012.

    CAS  PubMed  Google Scholar 

  19. Repace JL, Lowrey AH. Indoor air pollution, tobacco smoke, and public health. Science. 1980;208:464–72.

    CAS  PubMed  Google Scholar 

  20. Pope CA 3rd, Ezzati M, Dockery DW. Fine-particulate air pollution and life expectancy in the United States. N Engl J Med. 2009;360:376–86. doi:10.1056/NEJMsa0805646.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Kinney PL, Aggarwal M, Northridge ME, Janssen NA, Shepard P. Airborne concentrations of PM(2.5) and diesel exhaust particles on Harlem sidewalks: a community-based pilot study. Environ Health Perspect. 2000;108:213–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Stayner L, Dankovic D, Smith R, Steenland K. Predicted lung cancer risk among miners exposed to diesel exhaust particles. Am J Ind Med. 1998;34:207–19.

    CAS  PubMed  Google Scholar 

  23. Marcy TW, Merrill WW. Cigarette smoking and respiratory tract infection. Clin Chest Med. 1987;8:381–91.

    CAS  PubMed  Google Scholar 

  24. Murin S, Bilello KS. Respiratory tract infections: another reason not to smoke. Cleve Clin J Med. 2005;72:916–20.

    PubMed  Google Scholar 

  25. Arcavi L, Benowitz NL. Cigarette smoking and infection. Arch Intern Med. 2004;164:2206–16. doi:10.1001/archinte.164.20.2206.

    PubMed  Google Scholar 

  26. Almirall J, González CA, Balanzó X, Bolíbar I. Proportion of community-acquired pneumonia cases attributable to tobacco smoking. Chest. 1999;116:375–9.

    CAS  PubMed  Google Scholar 

  27. Nuorti JP, Butler JC, Farley MM, Harrison LH, McGeer A, Kolczak MS, Breiman RF. Cigarette smoking and invasive pneumococcal disease. Active Bacterial Core Surveillance Team. N Engl J Med. 2000;342:681–9. doi:10.1056/NEJM200003093421002.

    CAS  PubMed  Google Scholar 

  28. Farr BM, Bartlett CL, Wadsworth J, Miller DL. Risk factors for community-acquired pneumonia diagnosed upon hospital admission. British Thoracic Society Pneumonia Study Group. Respir Med. 2000;94:954–63.

    CAS  PubMed  Google Scholar 

  29. Straus WL, Plouffe JF, File TM Jr, Lipman HB, Hackman BH, Salstrom SJ, Benson RF, Breiman RF. Risk factors for domestic acquisition of legionnaires disease. Ohio legionnaires Disease Group. Arch Intern Med. 1996;156:1685–92.

    CAS  PubMed  Google Scholar 

  30. Klement E, Talkington DF, Wasserzug O, Kayouf R, Davidovitch N, Dumke R, Bar-Zeev Y, Ron M, Boxman J, Lanier Thacker W, Wolf D, Lazarovich T, Shemer-Avni Y, Glikman D, Jacobs E, Grotto I, Block C, Nir-Paz R. Identification of risk factors for infection in an outbreak of Mycoplasma pneumoniae respiratory tract disease. Clin Infect Dis. 2006;43:1239–45. doi:10.1086/508458.

    PubMed  Google Scholar 

  31. Doebbeling BN, Wenzel RP. The epidemiology of Legionella pneumophila infections. Semin Respir Infect. 1987;2:206–21.

    CAS  PubMed  Google Scholar 

  32. Pastor P, Medley F, Murphy TV. Invasive pneumococcal disease in Dallas County, Texas: results from population-based surveillance in 1995. Clin Infect Dis. 1998;26:590–5.

    CAS  PubMed  Google Scholar 

  33. Benseñor IM, Cook NR, Lee IM, Chown MJ, Hennekens CH, Buring JE, Manson JE. Active and passive smoking and risk of colds in women. Ann Epidemiol. 2001;11:225–31.

    PubMed  Google Scholar 

  34. Grayson ML, Newton-John H. Smoking and varicella pneumonia. J Infect. 1988;16:312.

    CAS  PubMed  Google Scholar 

  35. Agius AM, Wake M, Pahor AL, Smallman LA. Nasal and middle ear ciliary beat frequency in chronic suppurative otitis media. Clin Otolaryngol Allied Sci. 1995;20:470–4.

    CAS  PubMed  Google Scholar 

  36. Olson PE, Earhart KC, Rossetti RJ, Newton JA, Wallace MR. Smoking and risk of cryptococcosis in patients with AIDS. JAMA. 1997;277:629–30.

    CAS  PubMed  Google Scholar 

  37. Mishra V. Indoor air pollution from biomass combustion and acute respiratory illness in preschool age children in Zimbabwe. Int J Epidemiol. 2003;32:847–53.

    PubMed  Google Scholar 

  38. Cheng MF, Ho SC, Chiu HF, Wu TN, Chen PS, Yang CY. Consequences of exposure to Asian dust storm events on daily pneumonia hospital admissions in Taipei, Taiwan. J Toxicol Environ Health A. 2008;71:1295–9. doi:10.1080/15287390802114808.

    CAS  PubMed  Google Scholar 

  39. Korényi-Both AL, Korényi-Both AL, Molnár AC, Fidelus-Gort R. Al Eskan disease: desert storm pneumonitis. Mil Med. 1992;157:452–62.

    PubMed  Google Scholar 

  40. Jacobsen M, Smith TA, Hurley JF, Robertson A, Roscrow R. Respiratory infections in coal miners exposed to nitrogen oxides. Res Rep Health Eff Inst. 1988;18:1–56.

    PubMed  Google Scholar 

  41. Balmes J, Cullen MR, Gee JB. What infections occur in patients with occupational lung disease? Clin Chest Med. 1981;2:111–20.

    CAS  PubMed  Google Scholar 

  42. Torén K, Qvarfordt I, Bergdahl IA, Järvholm B. Increased mortality from infectious pneumonia after occupational exposure to inorganic dust, metal fumes and chemicals. Thorax. 2011;66:992–6. doi:10.1136/thoraxjnl-2011-200707.

    PubMed  Google Scholar 

  43. Greskevitch M, Kullman G, Bang KM, Mazurek JM. Respiratory disease in agricultural workers: mortality and morbidity statistics. J Agromedicine. 2007;12:5–10.

    PubMed  Google Scholar 

  44. Duclos P, Sanderson LM, Lipsett M. The 1987 forest fire disaster in California: assessment of emergency room visits. Arch Environ Health. 1990;45:53–8. doi:10.1080/00039896.1990.9935925.

    CAS  PubMed  Google Scholar 

  45. Morris K, Morgenlander M, Coulehan JL, Gahagen S, Arena VC. Wood-burning stoves and lower respiratory tract infection in American Indian children. Am J Dis Child. 1990;144:105–8.

    CAS  PubMed  Google Scholar 

  46. Honicky RE, Osborne JS 3rd. Respiratory effects of wood heat: clinical observations and epidemiologic assessment. Environ Health Perspect. 1991;95:105–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Ladomenou F, Kafatos A, Galanakis E. Environmental tobacco smoke exposure as a risk factor for infections in infancy. Acta Paediatr. 2009;98:1137–41. doi:10.1111/j.1651-2227.2009.01276.x.

    CAS  PubMed  Google Scholar 

  48. Jones LL, Hashim A, McKeever T, Cook DG, Britton J, Leonardi-Bee J. Parental and household smoking and the increased risk of bronchitis, bronchiolitis and other lower respiratory infections in infancy: systematic review and meta-analysis. Respir Res. 2011;12:5. doi:10.1186/1465-9921-12-5.

    PubMed Central  PubMed  Google Scholar 

  49. Jaakkola MS. Environmental tobacco smoke and health in the elderly. Eur Respir J. 2002;19:172–81.

    CAS  PubMed  Google Scholar 

  50. Royal College of Physicians. Passive smoking and children. A report by the tobacco advisory group. London: Royal College of Physicians; 2010.

    Google Scholar 

  51. Neupane B, Jerrett M, Burnett RT, Marrie T, Arain A, Loeb M. Long-term exposure to ambient air pollution and risk of hospitalization with community-acquired pneumonia in older adults. Am J Respir Crit Care Med. 2010;181:47–53. doi:10.1164/rccm.200901-0160OC.

    CAS  PubMed  Google Scholar 

  52. Atkinson RW, Anderson HR, Sunyer J, Ayres J, Baccini M, Vonk JM, Boumghar A, Forastiere F, Forsberg B, Touloumi G, Schwartz J, Katsouyanni K. Acute effects of particulate air pollution on respiratory admissions: results from APHEA 2 project. Air Pollution and Health: a European Approach. Am J Respir Crit Care Med. 2001;164:1860–6. doi:10.1164/ajrccm.164.10.2010138.

    CAS  PubMed  Google Scholar 

  53. Fukuda K, Hider PN, Epton MJ, Jennings LC, Kingham SP. Including viral infection data supports an association between particulate pollution and respiratory admissions. Aust N Z J Public Health. 2011;35:163–9. doi:10.1111/j.1753-6405.2010.00620.x.

    PubMed  Google Scholar 

  54. Castranova V, Ma JY, Yang HM, Antonini JM, Butterworth L, Barger MW, Roberts J, Ma JK. Effect of exposure to diesel exhaust particles on the susceptibility of the lung to infection. Environ Health Perspect. 2001;109:609–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Volkmer RE, Ruffin RE, Wigg NR, Davies N. The prevalence of respiratory symptoms in South Australian preschool children. I. Geographic location. J Paediatr Child Health. 1995;31:112–5.

    CAS  PubMed  Google Scholar 

  56. Watson BA. Acts of God. The Old Farmer’s Almanac Unpredictable Guide to Weather and Natural Disasters. New York: Random House; 1993. p. 95–100.

    Google Scholar 

  57. Bates MN, Khalakdina A, Pai M, Chang L, Lessa F, Smith KR. Risk of tuberculosis from exposure to tobacco smoke: a systematic review and meta-analysis. Arch Intern Med. 2007;167:335–42. doi:10.1001/archinte.167.4.335.

    PubMed  Google Scholar 

  58. Lin HH, Ezzati M, Murray M. Tobacco smoke, indoor air pollution and tuberculosis: a systematic review and meta-analysis. PLoS Med. 2007;4:e20. doi:10.1371/journal.pmed.0040020.

    PubMed Central  PubMed  Google Scholar 

  59. Pai M, Mohan A, Dheda K, Leung CC, Yew WW, Christopher DJ, Sharma SK. Lethal interaction: the colliding epidemics of tobacco and tuberculosis. Expert Rev Anti Infect Ther. 2007;5:385–91. doi:10.1586/14787210.5.3.385.

    PubMed  Google Scholar 

  60. Anderson RH, Sy FS, Thompson S, Addy C. Cigarette smoking and tuberculin skin test conversion among incarcerated adults. Am J Prev Med. 1997;13:175–81.

    CAS  PubMed  Google Scholar 

  61. Nisar M, Williams CS, Ashby D, Davies PD. Tuberculin testing in residential homes for the elderly. Thorax. 1993;48:1257–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Adelstein AR, Rimington J. Smoking and pulmonary tuberculosis: an analysis based on a study of volunteers for mass miniature radiography. Tubercle. 1967;48:219–26.

    Google Scholar 

  63. Jenkins PA. The epidemiology of opportunist mycobacterial infections in Wales, 1952–1978. Rev Infect Dis. 1981;3:1021–3.

    CAS  PubMed  Google Scholar 

  64. Mills PK, Beaumont JJ, Nasseri K. Proportionate mortality among current and former members of the United Farm Workers of America, AFL-CIO, in California 1973–2000. J Agromedicine. 2006;11:39–48. doi:10.1300/J096v11n01_05.

    PubMed  Google Scholar 

  65. Leung CC, Lam TH, Ho KS, Yew WW, Tam CM, Chan WM, Law WS, Chan CK, Chang KC, Au KF. Passive smoking and tuberculosis. Arch Intern Med. 2010;170:287–92. doi:10.1001/archinternmed.2009.506.

    PubMed  Google Scholar 

  66. du Preez K, Mandalakas AM, Kirchner HL, Grewal HM, Schaaf HS, van Wyk SS, Hesseling AC. Environmental tobacco smoke exposure increases Mycobacterium tuberculosis infection risk in children. Int J Tuberc Lung Dis. 2011;15:1490–6. doi:10.5588/ijtld.10.0759.

    PubMed  Google Scholar 

  67. De Coster C, Verstraeten JM, Dumortier P, De Vuyst P. Atypical mycobacteriosis as a complication of talc pneumoconiosis. Eur Respir J. 1996;9:1757–9.

    PubMed  Google Scholar 

  68. Blackwell CC, Tzanakaki G, Kremastinou J, Weir DM, Vakalis N, Elton RA, Mentis A, Fatouros N. Factors affecting carriage of Neisseria meningitidis among Greek military recruits. Epidemiol Infect. 1992;108:441–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Gold R. Epidemiology of bacterial meningitis. Infect Dis Clin North Am. 1999;13:515–25.

    CAS  PubMed  Google Scholar 

  70. Pereiró I, Díez-Domingo J, Segarra L, Ballester A, Albert A, Morant A. Risk factors for invasive disease among children in Spain. J Infect. 2004;48:320–9. doi:10.1016/j.jinf.2003.10.015.

    PubMed  Google Scholar 

  71. Hodgson A, Smith T, Gagneux S, Adjuik M, Pluschke G, Mensah NK, Binka F, Genton B. Risk factors for meningococcal meningitis in northern Ghana. Trans R Soc Trop Med Hyg. 2001;95:477–80.

    CAS  PubMed  Google Scholar 

  72. Bredfeldt RC, Cain SR, Schutze GE, Holmes TM, McGhee LA. Relation between passive tobacco smoke exposure and the development of bacterial meningitis in children. J Am Board Fam Pract. 1995;8:95–8.

    CAS  PubMed  Google Scholar 

  73. Cookson ST, Corrales JL, Lotero JO, Regueira M, Binsztein N, Reeves MW, Ajello G, Jarvis WR. Disco fever: epidemic meningococcal disease in northeastern Argentina associated with disco patronage. J Infect Dis. 1998;178:266–9.

    CAS  PubMed  Google Scholar 

  74. Fischer M, Hedberg K, Cardosi P, Plikaytis BD, Hoesly FC, Steingart KR, Bell TA, Fleming DW, Wenger JD, Perkins BA. Tobacco smoke as a risk factor for meningococcal disease. Pediatr Infect Dis J. 1997;16:979–83.

    CAS  PubMed  Google Scholar 

  75. Molesworth AM, Cuevas LE, Morse AP, Herman JR, Thomson MC. Dust clouds and spread of infection. Lancet. 2002;359:81–2. doi:10.1016/S0140-6736(02)07304-X.

    PubMed  Google Scholar 

  76. Tobías A, Caylà JA, Pey J, Alastuey A, Querol X. Are Saharan dust intrusions increasing the risk of meningococcal meningitis? Int J Infect Dis. 2011;15:e503. doi:10.1016/j.ijid.2011.03.008.

    PubMed  Google Scholar 

  77. Zelikoff JT, Schermerhorn KR, Fang K, Cohen MD, Schlesinger RB. A role for associated transition metals in the immunotoxicity of inhaled ambient particulate matter. Environ Health Perspect. 2002;110:871–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Roberts ES, Richards JH, Jaskot R, Dreher KL. Oxidative stress mediates air pollution particle-induced acute lung injury and molecular pathology. Inhal Toxicol. 2003;15:1327–46. doi:10.1080/08958370390241795.

    CAS  PubMed  Google Scholar 

  79. Carvalho-Oliveira R, Saiki M, Pires-Neto RC, Lorenzi-Filho G, Macchione M, Saldiva PH. Anti-oxidants reduce the acute adverse effects of residual oil fly ash on the frog palate mucociliary epithelium. Environ Res. 2005;98:349–54. doi:10.1016/j.envres.2004.10.002.

    CAS  PubMed  Google Scholar 

  80. Foster WM, Langenback EG, Bergofsky EH. Disassociation in the mucociliary function of central and peripheral airways of asymptomatic smokers. Am Rev Respir Dis. 1985;132:633–9.

    CAS  PubMed  Google Scholar 

  81. Ortega E, Hueso F, Collazos ME, Pedrera MI, Barriga C, Rodríguez AB. Phagocytosis of latex beads by alveolar macrophages from mice exposed to cigarette smoke. Comp Immunol Microbiol Infect Dis. 1992;15:137–42.

    CAS  PubMed  Google Scholar 

  82. Soukup JM, Ghio AJ, Becker S. Soluble components of Utah Valley particulate pollution alter alveolar macrophage function in vivo and in vitro. Inhal Toxicol. 2000;12:401–14. doi:10.1080/089583700196112.

    CAS  PubMed  Google Scholar 

  83. Becker S, Soukup JM. Exposure to urban air particulates alters the macrophage-mediated inflammatory response to respiratory viral infection. J Toxicol Environ Health A. 1999;57:445–57.

    CAS  PubMed  Google Scholar 

  84. Dugger DL, Stanton JH, Irby BN, McConnell BL, Cummings WW, Maatman RW. The exchange of twenty metal ions with the weakly acidic silanol group of silica gel. J Phys Chem. 1964;68:757–60.

    CAS  Google Scholar 

  85. Ghio AJ, Jaskot RH, Hatch GE. Lung injury after silica instillation is associated with an accumulation of iron in rats. Am J Physiol. 1994;267:L686–92.

    CAS  PubMed  Google Scholar 

  86. Koerten HK, Brederoo P, Ginsel LA, Daems WT. The endocytosis of asbestos by mouse peritoneal macrophages and its long-term effect on iron accumulation and labyrinth formation. Eur J Cell Biol. 1986;40:25–36.

    CAS  PubMed  Google Scholar 

  87. Weinberg ED. Iron availability and infection. Biochim Biophys Acta. 2009;1790:600–5. doi:10.1016/j.bbagen.2008.07.002.

    CAS  PubMed  Google Scholar 

  88. Gangaidzo IT, Moyo VM, Mvundura E, Aggrey G, Murphree NL, Khumalo H, Saungweme T, Kasvosve I, Gomo ZA, Rouault T, Boelaert JR, Gordeuk VR. Association of pulmonary tuberculosis with increased dietary iron. J Infect Dis. 2001;184:936–9. doi:10.1086/323203.

    CAS  PubMed  Google Scholar 

  89. Ratledge C. Iron, mycobacteria and tuberculosis. Tuberculosis (Edinb). 2004;84:110–30.

    Google Scholar 

  90. Boelaert JR, Vandecasteele SJ, Appelberg R, Gordeuk VR. The effect of the host’s iron status on tuberculosis. J Infect Dis. 2007;195:1745–53. doi:10.1086/518040.

    CAS  PubMed  Google Scholar 

  91. Monfeli RR, Beeson C. Targeting iron acquisition by Mycobacterium tuberculosis. Infect Disord Drug Targets. 2007;7:213–20.

    CAS  PubMed  Google Scholar 

  92. Banerjee S, Farhana A, Ehtesham NZ, Hasnain SE. Iron acquisition, assimilation and regulation in mycobacteria. Infect Genet Evol. 2011;11:825–38. doi:10.1016/j.meegid.2011.02.016.

    CAS  PubMed  Google Scholar 

  93. Sharma AK, Naithani R, Kumar V, Sandhu SS. Iron regulation in tuberculosis research: promise and challenges. Curr Med Chem. 2011;18:1723–31.

    CAS  PubMed  Google Scholar 

  94. Hsu YH, Chen CW, Sun HS, Jou R, Lee JJ, Su IJ. Association of NRAMP 1 gene polymorphism with susceptibility to tuberculosis in Taiwanese aboriginals. J Formos Med Assoc. 2006;105:363–9. doi:10.1016/S0929-6646(09)60131-5.

    CAS  PubMed  Google Scholar 

  95. Holbein BE. Iron-controlled infection with Neisseria meningitidis in mice. Infect Immun. 1980;29:886–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Dupuy JM, Sparkes BG, Desrosiers M, Skamene E, Micusan VV. Prevention of the enhancing effect of mucin and iron in mouse meningococcal infection. Can J Microbiol. 1983;29:1671–4.

    CAS  PubMed  Google Scholar 

  97. Noinaj N, Easley NC, Oke M, Mizuno N, Gumbart J, Boura E, Steere AN, Zak O, Aisen P, Tajkhorshid E, Evans RW, Gorringe AR, Mason AB, Steven AC, Buchanan SK. Structural basis for iron piracy by pathogenic Neisseria. Nature. 2012;483:53–8. doi:10.1038/nature10823.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Weinberg ED. Iron withholding: a defense against viral infections. Biometals. 1996;9:393–9.

    CAS  PubMed  Google Scholar 

  99. Oppenheimer SJ, Gibson FD, MacFarlane SB, Moody JB, Harrison C, Spencer A, Bunari O. Iron supplementation increases prevalence and effects of malaria: report on clinical studies in Papua New Guinea. Trans Roy Soc Trop Med Hyg. 1986;80:603–12.

    CAS  PubMed  Google Scholar 

  100. Gordeuk VR, McLaren CE, MacPhail AP, Deichsel G, Bothwell TH. Associations of iron overload in Africa with hepatocellular carcinoma and tuberculosis: Strachan’s 1929 thesis revisited. Blood. 1996;87:3470–6.

    CAS  PubMed  Google Scholar 

  101. Moyo VM, Gangaidzo IT, Gordeuk VR, Kiire CF, Macphail AP. Tuberculosis and iron overload in Africa: a review. Cent Afr J Med. 1997;43:334–9.

    CAS  PubMed  Google Scholar 

  102. Levenson CW, Tassabehji NM. Iron and ageing: an introduction to iron regulatory mechanisms. Ageing Res Rev. 2004;3:251–63. doi:10.1016/j.arr.2004.03.001.

    CAS  PubMed  Google Scholar 

  103. Harrison-Findik DD. Role of alcohol in the regulation of iron metabolism. World J Gastroenterol. 2007;13:4925–30.

    CAS  PubMed  Google Scholar 

  104. Crnich CJ, Drinka P. Medical device-associated infections in the long-term care setting. Infect Dis Clin North Am. 2012;26:143–64. doi:10.1016/j.idc.2011.09.007.

    PubMed  Google Scholar 

  105. Trampuz A, Widmer AF. Infections associated with orthopedic implants. Curr Opin Infect Dis. 2006;19:349–56. doi:10.1097/01.qco.0000235161.85925.e8.

    CAS  PubMed  Google Scholar 

  106. Mashburn LM, Jett AM, Akins DR, Whiteley M. Staphylococcus aureus serves as an iron source for Pseudomonas aeruginosa during in vivo coculture. J Bacteriol. 2005;187:554–66. doi:10.1128/JB.187.2.554-566.2005.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Whitby PW, Vanwagoner TM, Springer JM, Morton DJ, Seale TW, Stull TL. Burkholderia cenocepacia utilizes ferritin as an iron source. J Med Microbiol. 2006;55:661–8. doi:10.1099/jmm.0.46199-0.

    CAS  PubMed  Google Scholar 

  108. Wang X, Ghio AJ, Yang F, Dolan KG, Garrick MD, Piantadosi CA. Iron uptake and Nramp2/DMT1/DCT1 in human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2002;282:L987–95.

    CAS  PubMed  Google Scholar 

  109. Turi JL, Yang F, Garrick MD, Piantadosi CA, Ghio AJ. The iron cycle and oxidative stress in the lung. Free Radic Biol Med. 2004;36:850–7.

    CAS  PubMed  Google Scholar 

  110. Ghio AJ, Roggli VL, Soukup JM, Richards JH, Randell SH, Muhlebach MS. Iron accumulates in the lavage and explanted lungs of cystic fibrosis patients. J Cyst Fibros. 2013;12:390–8.

    CAS  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Ghio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghio, A.J. Particle exposures and infections. Infection 42, 459–467 (2014). https://doi.org/10.1007/s15010-014-0592-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s15010-014-0592-6

Keywords

Navigation