Skip to main content

Advertisement

Log in

Maternal Influences over Offspring Allergic Responses

  • BASIC AND APPLIED SCIENCE (M FRIERI AND PJ BRYCE, SECTION EDITORS)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Asthma occurs as a result of complex interactions of environmental and genetic factors. Clinical studies and animal models of asthma indicate offspring of allergic mothers have increased risk of development of allergies. Environmental factors including stress-induced corticosterone and vitamin E isoforms during pregnancy regulate the risk for offspring development of allergy. In this review, we discuss mechanisms for the development of allergic disease early in life, environmental factors that may impact the development of risk for allergic disease early in life, and how the variation in global prevalence of asthma may be explained, at least in part, by some environmental components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Martinez FD. Genes, environments, development and asthma: a reappraisal. Eur Respir J. 2007;29:179–84.

    CAS  PubMed  Google Scholar 

  2. Martinez FD, Vercelli D. Asthma. Lancet. 2013;382:1360–72.

    PubMed  Google Scholar 

  3. Bousquet J, Bousquet PJ, Godard P, Daures JP. The public health implications of asthma. Bull World Health Organ. 2005;83:548–54.

    PubMed Central  PubMed  Google Scholar 

  4. Vollmer WM, Osborne ML, Buist AS. 20-year trends in the prevalence of asthma and chronic airflow obstruction in an HMO. Am J Respir Crit Care Med. 1998;157:1079–84.

    CAS  PubMed  Google Scholar 

  5. Friebele E. The attack of asthma. Environ Health Perspect. 1996;104:22–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. van Schayck CP, Smit HA. The prevalence of asthma in children: a reversing trend. Eur Respir J. 2005;26:647–50.

    PubMed  Google Scholar 

  7. Lim RH, Kobzik L. Maternal transmission of asthma risk. Am J Reprod Immunol. 2009;61:1–10.

    PubMed  Google Scholar 

  8. Hamada K et al. Allergen-independent maternal transmission of asthma susceptibility. J Immunol. 2003;170:1683–9.

    CAS  PubMed  Google Scholar 

  9. Fedulov AV, Leme AS, Kobzik L. Duration of allergic susceptibility in maternal transmission of asthma risk. Am J Reprod Immunol. 2007;58:120–8.

    CAS  PubMed  Google Scholar 

  10. Hubeau C, Apostolou I, Kobzik L. Targeting of CD25 and glucocorticoid-induced TNF receptor family-related gene-expressing T cells differentially modulates asthma risk in offspring of asthmatic and normal mother mice. J Immunol. 2007;178:1477–87.

    CAS  PubMed  Google Scholar 

  11. Hubeau C, Apostolou I, Kobzik L. Adoptively transferred allergen-specific T cells cause maternal transmission of asthma risk. Am J Pathol. 2006;168:1931–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Herz U et al. Allergic sensitization and allergen exposure during pregnancy favor the development of atopy in the neonate. Int Arch Allergy Immunol. 2001;124:193–6.

    CAS  PubMed  Google Scholar 

  13. Herz U et al. Prenatal sensitization in a mouse model. Am J Respir Crit Care Med. 2000;162:S62–5.

    CAS  PubMed  Google Scholar 

  14. Jarrett E, Hall E. Selective suppression of IgE antibody responsiveness by maternal influence. Nature. 1979;280:145–7.

    CAS  PubMed  Google Scholar 

  15. Wark PA, Murphy V, Mattes J. The interaction between mother and fetus and the development of allergic asthma. Expert Rev Respir Med. 2014;8:57–66.

    CAS  PubMed  Google Scholar 

  16. Blumer N, Herz U, Wegmann M, Renz H. Prenatal lipopolysaccharide-exposure prevents allergic sensitization and airway inflammation, but not airway responsiveness in a murine model of experimental asthma. Clin Exp Allergy. 2005;35:397–402.

    CAS  PubMed  Google Scholar 

  17. Devereux G, Barker RN, Seaton A. Antenatal determinants of neonatal immune responses to allergens. Clin Exp Allergy. 2002;32:43–50.

    CAS  PubMed  Google Scholar 

  18. Uthoff H et al. Critical role of preconceptional immunization for protective and nonpathological specific immunity in murine neonates. J Immunol. 2003;171:3485–92.

    CAS  PubMed  Google Scholar 

  19. Kurukulaaratchy RJ, Waterhouse L, Matthews SM, Arshad SH. Are influences during pregnancy associated with wheezing phenotypes during the first decade of life? Acta Paediatr. 2005;94:553–8.

    PubMed  Google Scholar 

  20. Celedon JC et al. Exposure to cat allergen, maternal history of asthma, and wheezing in first 5 years of life. Lancet. 2002;360:781–2.

    PubMed  Google Scholar 

  21. Kurukulaaratchy RJ, Matthews S, Waterhouse L, Arshad SH. Factors influencing symptom expression in children with bronchial hyperresponsiveness at 10 years of age. J Allergy Clin Immunol. 2003;112:311–6.

    PubMed  Google Scholar 

  22. Latzin P et al. Prospectively assessed incidence, severity, and determinants of respiratory symptoms in the first year of life. Pediatr Pulmonol. 2007;42:41–50.

    CAS  PubMed  Google Scholar 

  23. Martinez FD et al. Asthma and wheezing in the first six years of life. The Group Health Medical Associates. N Engl J Med. 1995;332:133–8.

    CAS  PubMed  Google Scholar 

  24. Litonjua AA, Carey VJ, Burge HA, Weiss ST, Gold DR. Parental history and the risk for childhood asthma. Does mother confer more risk than father? Am J Respir Crit Care Med. 1998;158:176–81.

    CAS  PubMed  Google Scholar 

  25. Lim RH, Kobzik L, Dahl M. Risk for asthma in offspring of asthmatic mothers versus fathers: a meta-analysis. PLoS One. 2010;5:e10134.

    PubMed Central  PubMed  Google Scholar 

  26. Folsgaard NV et al. Neonatal cytokine profile in the airway mucosal lining fluid is skewed by maternal atopy. Am J Respir Crit Care Med. 2012;185:275–80.

    PubMed  Google Scholar 

  27. Bousquet J et al. MeDALL (Mechanisms of the Development of ALLergy): an integrated approach from phenotypes to systems medicine. Allergy. 2011;66:596–604.

    CAS  PubMed  Google Scholar 

  28. Sonnenschein-van der Voort, A. M. et al. Influence of maternal and cord blood C-reactive protein on childhood respiratory symptoms and eczema. Pediatr Allergy Immunol. 2013;24:469–475.

  29. Giwercman C et al. Increased risk of eczema but reduced risk of early wheezy disorder from exclusive breast-feeding in high-risk infants. J Allergy Clin Immunol. 2010;125:866–71.

    PubMed  Google Scholar 

  30. Hamada K et al. Allergen-independent maternal transmission of asthma susceptibility. J Immunol. 2003;170:1683–9.

    CAS  PubMed  Google Scholar 

  31. Lim RH, Kobzik L. Transplacental passage of interleukins 4 and 13? PLoS One. 2009;4:e4660.

    PubMed Central  PubMed  Google Scholar 

  32. Leme AS et al. Role of breast milk in a mouse model of maternal transmission of asthma susceptibility. J Immunol. 2006;176:762–9.

    CAS  PubMed  Google Scholar 

  33. Hsu P, Nanan R. Foetal immune programming: hormones, cytokines, microbes and regulatory T cells. J Reprod Immunol. 2014;104–105:2–7.

    PubMed  Google Scholar 

  34. Barrett EG, Rudolph K, Bowen LE, Bice DE. Parental allergic status influences the risk of developing allergic sensitization and an asthmatic-like phenotype in canine offspring. Immunology. 2003;110:493–500.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Abdala-Valencia H, Berdnikovs S, Soveg F, Cook-Mills JM. Alpha-tocopherol supplementation of allergic female mice inhibits development of CD11c+CD11b+ dendritic cells in utero and allergic inflammation in neonates. Am J Physiol Lung Cell Mol Physiol. 2014;307:L482–496. In this report using a mouse model, it was demonstrated that offspring of allergic mothers have an increase in numbers of distinct subsets of dendritic cells. The increase in numbers of these dendritic cell subsets in the fetal liver and pup lung of offspring of allergic mothers was blocked by supplementation of the allergic mother at the time of pregnancy with the vitamin E isoform α-tocopherol. In addition, α-tocopherol directly regulated bone marrow differentiation of these dendritic cell subsets in vitro.

    CAS  PubMed  Google Scholar 

  36. Lim RH, Arredouani MS, Fedulov A, Kobzik L, Hubeau C. Maternal allergic contact dermatitis causes increased asthma risk in offspring. Respir Res. 2007;8:56.

  37. Fedulov AV, Kobzik L. Allergy risk is mediated by dendritic cells with congenital epigenetic changes. Am J Respir Cell Mol Biol. 2011;44:285–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Williams JW. Transcription factor IRF4 drives dendritic cells to promote Th2 differentiation. Nat Commun. 2013;4:2990. There are many subsets of dendritic cells in the lung. In this report, they demonstrated that lung IRF4+ dendritic cell subsets drive the Th2 response in mice.

    PubMed Central  PubMed  Google Scholar 

  39. Mikhaylova L, Zhang Y, Kobzik L, Fedulov AV. Link between epigenomic alterations and genome-wide aberrant transcriptional response to allergen in dendritic cells conveying maternal asthma risk. PLoS One. 2013;8:e70387. The offspring of allergic mothers have an elevated risk of developing allergic responses in humans and animal models. This increased risk of developing allergic responses in offspring of allergic mothers is mediated by changes in offspring dendritic cells. In this report, they identified epigenomic changes in dendritic cells of offspring of allergic mice.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Stoney RM et al. Maternal breast milk long-chain n-3 fatty acids are associated with increased risk of atopy in breastfed infants. Clin Exp Allergy. 2004;34:194–200.

    CAS  PubMed  Google Scholar 

  41. Reichardt P et al. Fatty acids in colostrum from mothers of children at high risk of atopy in relation to clinical and laboratory signs of allergy in the first year of life. Allergy. 2004;59:394–400.

    CAS  PubMed  Google Scholar 

  42. Miyake Y, Okubo H, Sasaki S, Tanaka K, Hirota Y. Maternal dietary patterns during pregnancy and risk of wheeze and eczema in Japanese infants aged 16–24 months: the Osaka Maternal and Child Health Study. Pediatr Allergy Immunol. 2011;22:734–41.

    PubMed  Google Scholar 

  43. Verhasselt V et al. Breast milk-mediated transfer of an antigen induces tolerance and protection from allergic asthma. Nat Med. 2008;14:170–5.

    CAS  PubMed  Google Scholar 

  44. Mosconi E et al. Breast milk immune complexes are potent inducers of oral tolerance in neonates and prevent asthma development. Mucosal Immunol. 2010;3:461–74.

    CAS  PubMed  Google Scholar 

  45. Muniz BP et al. Tolerogenic microenvironment in neonatal period induced by maternal immunization with ovalbumin. Immunobiology. 2014;219:377–84.

    CAS  PubMed  Google Scholar 

  46. Fedulov AV et al. Pulmonary exposure to particles during pregnancy causes increased neonatal asthma susceptibility. Am J Respir Cell Mol Biol. 2008;38:57–67.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Gerhold K et al. Prenatal initiation of endotoxin airway exposure prevents subsequent allergen-induced sensitization and airway inflammation in mice. J Allergy Clin Immunol. 2006;118:666–73.

    CAS  PubMed  Google Scholar 

  48. Gerhold K, Bluemchen K, Franke A, Stock P, Hamelmann E. Exposure to endotoxin and allergen in early life and its effect on allergen sensitization in mice. J Allergy Clin Immunol. 2003;112:389–96.

    CAS  PubMed  Google Scholar 

  49. Tulic MK, Knight DA, Holt PG, Sly PD. Lipopolysaccharide inhibits the late-phase response to allergen by altering nitric oxide synthase activity and interleukin-10. Am J Respir Cell Mol Biol. 2001;24:640–6.

    CAS  PubMed  Google Scholar 

  50. Gerhold K et al. Endotoxins prevent murine IgE production, T(H)2 immune responses, and development of airway eosinophilia but not airway hyperreactivity. J Allergy Clin Immunol. 2002;110:110–6.

    CAS  PubMed  Google Scholar 

  51. Lima C et al. Modulation of the induction of lung and airway allergy in the offspring of IFN-gamma-treated mother mice. J Immunol. 2005;175:3554–9.

    CAS  PubMed  Google Scholar 

  52. Fedulov A, Silverman E, Xiang Y, Leme A, Kobzik L. Immunostimulatory CpG oligonucleotides abrogate allergic susceptibility in a murine model of maternal asthma transmission. J Immunol. 2005;175:4292–300.

    CAS  PubMed  Google Scholar 

  53. de Brito CA et al. CpG-induced Th1-type response in the downmodulation of early development of allergy and inhibition of B7 expression on T cells of newborn mice. J Clin Immunol. 2010;30:280–91.

    PubMed  Google Scholar 

  54. Netting MJ, Middleton PF, Makrides M. Does maternal diet during pregnancy and lactation affect outcomes in offspring? A systematic review of food-based approaches Nutrition. 2014;30:1225–41.

    CAS  Google Scholar 

  55. Allan, K. M. et al. Maternal vitamin D and E intakes during pregnancy are associated with asthma in children. Eur Respir J 30, erj01022-02014 (2014).

  56. Junge KM, Lehmann I, Borte M. Can vitamin D intake during pregnancy affect the risk of allergy in children? Expert Rev Clin Immunol. 2013;9:699–701.

    CAS  PubMed  Google Scholar 

  57. Cook-Mills JM, Avila PC. Vitamin E and D regulation of allergic asthma immunopathogenesis. Int Immunopharmacol. 2014;29:007.

    Google Scholar 

  58. Camargo Jr CA et al. Maternal intake of vitamin D during pregnancy and risk of recurrent wheeze in children at 3 y of age. Am J Clin Nutr. 2007;85:788–95.

    CAS  PubMed  Google Scholar 

  59. Beigelman A et al. The association between vitamin D status and the rate of exacerbations requiring oral corticosteroids in preschool children with recurrent wheezing. J Allergy Clin Immunol. 2014;133:1489–92.

    CAS  PubMed  Google Scholar 

  60. Chawes BL et al. Cord blood 25(OH)-vitamin D deficiency and childhood asthma, allergy and eczema: the COPSAC2000 birth cohort study. PLoS One. 2014;9:e99856.

    PubMed Central  PubMed  Google Scholar 

  61. Uauy R et al. Safety and efficacy of omega-3 fatty acids in the nutrition of very low birth weight infants: soy oil and marine oil supplementation of formula. J Pediatr. 1994;124:612–20.

    CAS  PubMed  Google Scholar 

  62. Boyle FG, Yuhas RJ, Lien EL. Red blood cell and tissue phospholipid fatty acid profiles of weanling rats fed infant formula fat blends containing soy and/or corn oil. Ann Nutr Metab. 1996;40:234–42.

    CAS  PubMed  Google Scholar 

  63. Nelson SE, Rogers RR, Frantz JA, Ziegler EE. Palm olein in infant formula: absorption of fat and minerals by normal infants. Am J Clin Nutr. 1996;64:291–6.

    CAS  PubMed  Google Scholar 

  64. Cook-Mills JM, McCary CA. Isoforms of vitamin E differentially regulate inflammation. Endocr Metab Immune Disord Drug Targets. 2010;10:348–66.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Berdnikovs S et al. Isoforms of vitamin E have opposing immunoregulatory functions during inflammation by regulating leukocyte recruitment. J Immunol. 2009;182:4395–405.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Hunter SC, Cahoon EB. Enhancing vitamin E in oilseeds: unraveling tocopherol and tocotrienol biosynthesis. Lipids. 2007;42:97–108.

    CAS  PubMed  Google Scholar 

  67. Wolf G. How an increased intake of alpha-tocopherol can suppress the bioavailability of gamma-tocopherol. Nutr Rev. 2006;64:295–9.

    PubMed  Google Scholar 

  68. Leonard SW, Terasawa Y, Farese Jr RV, Traber MG. Incorporation of deuterated RRR- or all-rac-alpha-tocopherol in plasma and tissues of alpha-tocopherol transfer protein–null mice. Am J Clin Nutr. 2002;75:555–60.

    CAS  PubMed  Google Scholar 

  69. Brigelius-Flohe R, Traber MG. Vitamin E: function and metabolism. FASEB J. 1999;13:1145–55.

    CAS  PubMed  Google Scholar 

  70. Podda M, Weber C, Traber MG, Packer L. Simultaneous determination of tissue tocopherols, tocotrienols, ubiquinols, and ubiquinones. J Lipid Res. 1996;37:893–901.

    CAS  PubMed  Google Scholar 

  71. Traber MG, Kayden HJ. Preferential incorporation of alpha-tocopherol vs gamma-tocopherol in human lipoproteins. Am J Clin Nutr. 1989;49:517–26.

    CAS  PubMed  Google Scholar 

  72. McCary CA et al. Vitamin E isoforms directly bind PKCalpha and differentially regulate activation of PKCalpha. Biochem J. 2012;441:189–98.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. McCary CA, Abdala-Valencia H, Berdnikovs S, Cook-Mills JM. Supplemental and highly elevated tocopherol doses differentially regulate allergic inflammation: reversibility of alpha-tocopherol and gamma-tocopherol’s effects. J Immunol. 2011;186:3674–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Cook-Mills JM, Marchese M, Abdala-Valencia H. Vascular cell adhesion molecule-1 expression and signaling during disease: regulation by reactive oxygen species and antioxidants. Antioxid Redox Signal. 2011;15:1607–38.

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Cook-Mills JM, Marchese ME, Abdala-Valencia H. Vascular cell adhesion molecule-1 expression and signaling during disease: regulation by reactive oxygen species and antioxidants. Antioxid Redox Signal. 2011;15:1607–38.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Cook-Mills, J. M. in Eosinophils in health and disease. (ed J.J. and Rosenberg Lee, H.F) 139–153 (Elsevier, 2012)

  77. Marchese ME. The vitamin E isoforms alpha-tocopherol and gamma-tocopherol have opposite associations with spirometric parameters: the CARDIA study. Respir Res. 2014;15:31. The prevalence of allergies has increased in just a few decades suggesting that environmental factors likely impact allergies and asthma. In this report, it is demonstrated in a 20-year prospective study with 4500 individuals in the USA that, by age 21, human plasma α-tocopherol associates with better lung spirometry and human plasma γ-tocopherol associates with worse lung spirometry. Thus, the balance of α-tocopherol and γ-tocopherol regulates adult allergic responses. Regulation of allergies and asthma in women has the potential to influence the development of risk of allergies in her children.

    PubMed Central  PubMed  Google Scholar 

  78. Tabak C et al. Dietary factors and pulmonary function: a cross sectional study in middle aged men from three European countries. Thorax. 1999;54:1021–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Smit HA, Grievink L, Tabak C. Dietary influences on chronic obstructive lung disease and asthma: a review of the epidemiological evidence. Proc Nutr Soc. 1999;58:309–19.

    CAS  PubMed  Google Scholar 

  80. Weiss ST. Diet as a risk factor for asthma. Ciba Fndn Symp. 1997;206:244–57.

    CAS  Google Scholar 

  81. Troisi RJ et al. A prospective study of diet and adult-onset asthma. Am J Respir Crit Care Med. 1995;151:1401–8.

    CAS  PubMed  Google Scholar 

  82. Dow L et al. Does dietary intake of vitamins C and E influence lung function in older people? Am J Respir Crit Care Med. 1996;154:1401–4.

    CAS  PubMed  Google Scholar 

  83. Wagner KH, Kamal-Eldin A, Elmadfa I. Gamma-tocopherol—an underestimated vitamin? Ann Nutr Metab. 2004;48:169–88.

    CAS  PubMed  Google Scholar 

  84. Jiang Q, Christen S, Shigenaga MK, Ames BN. Gamma-tocopherol, the major form of vitamin E in the US diet, deserves more attention. Am J Clin Nutr. 2001;74:714–22.

    CAS  PubMed  Google Scholar 

  85. Muller-Schmehl K et al. Localization of alpha-tocopherol transfer protein in trophoblast, fetal capillaries’ endothelium and amnion epithelium of human term placenta. Free Radic Res. 2004;38:413–20.

    PubMed  Google Scholar 

  86. Jishage K et al. Vitamin E is essential for mouse placentation but not for embryonic development itself. Biol Reprod. 2005;73:983–7.

    CAS  PubMed  Google Scholar 

  87. Kalayci O, Besler T, Kilinc K, Sekerel BE, Saraclar Y. Serum levels of antioxidant vitamins (alpha tocopherol, beta carotene, and ascorbic acid) in children with bronchial asthma. Turk J Peds. 2000;42:17–21.

    CAS  Google Scholar 

  88. Kelly FJ, Mudway I, Blomberg A, Frew A, Sandstrom T. Altered lung antioxidant status in patients with mild asthma. Lancet. 1999;354:482–3.

    CAS  PubMed  Google Scholar 

  89. Shvedova AA, Kisin ER, Kagan VE, Karol MH. Increased lipid peroxidation and decreased antioxidants in lungs of guinea pigs following an allergic pulmonary response. Tox Appl Pharm. 1995;132:72–81.

    CAS  Google Scholar 

  90. Schunemann HJ et al. The relation of serum levels of antioxidant vitamins C and E, retinol and carotenoids with pulmonary function in the general population. Am J Respir Crit Care Med. 2001;163:1246–55.

    CAS  PubMed  Google Scholar 

  91. Zourbas S, Dubanchet S, Martal J, Chaouat G. Localization of pro-inflammatory (IL-12, IL-15) and anti-inflammatory (IL-11, IL-13) cytokines at the foetomaternal interface during murine pregnancy. Clin Exp Immunol. 2001;126:519–28.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Ostojic S et al. Demonstration of the presence of IL-16, IL-17 and IL-18 at the murine fetomaternal interface during murine pregnancy. Am J Reprod Immunol. 2003;49:101–12.

    CAS  PubMed  Google Scholar 

  93. Bowen JM, Chamley L, Mitchell MD, Keelan JA. Cytokines of the placenta and extra-placental membranes: biosynthesis, secretion and roles in establishment of pregnancy in women. Placenta. 2002;23:239–56.

    CAS  PubMed  Google Scholar 

  94. Gregor H et al. The passage of granulocyte-macrophage colony-stimulating factor across the human placenta perfused in vitro. J Soc Gynecol Investig. 1999;6:307–10.

    CAS  PubMed  Google Scholar 

  95. Lim R, Fedulov AV, Kobzik L. Maternal stress during pregnancy increases neonatal allergy susceptibility: role of glucocorticoids. Am J Physiol Lung Cell Mol Physiol. 2014;307:L141–148. Maternal factors that are transferred from allergic mothers to offspring for the increased risk of allergy in the offspring were not known. In this report, they demonstrated in mice that maternal corticosterone is sufficient to increase the risk of allergic responses in offspring.

    CAS  PubMed  Google Scholar 

  96. Costa-Pinto FA, Basso AS, Britto LR, Malucelli BE, Russo M. Avoidance behavior and neural correlates of allergen exposure in a murine model of asthma. Brain Behav Immun. 2005;19:52–60.

    CAS  PubMed  Google Scholar 

  97. Costa-Pinto FA et al. Neural correlates of IgE-mediated allergy. Ann N Y Acad Sci. 2006;1088:116–31.

    CAS  PubMed  Google Scholar 

  98. Portela Cde P, Massoco Cde O, de Lima WT, Palermo-Neto J. Stress-induced increment on total bronchoalveolar cell count in OVA-sensitized rats. Physiol Behav. 2001;72:415–20.

    PubMed  Google Scholar 

  99. Portela CP et al. Effects of stress and neuropeptides on airway responses in ovalbumin-sensitized rats. Neuroimmunomodulation. 2007;14:105–11.

    CAS  PubMed  Google Scholar 

  100. Portela Cde P, Tiberio Ide F, Leick-Maldonado EA, Martins MA, Palermo-Neto J. Effects of diazepam and stress on lung inflammatory response in OVA-sensitized rats. Am J Physiol Lung Cell Mol Physiol. 2002;282:L1289–95.

    PubMed  Google Scholar 

  101. Tonelli LH et al. Allergic rhinitis induces anxiety-like behavior and altered social interaction in rodents. Brain Behav Immun. 2009;23:784–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Lu Y et al. Effects of stress in early life on immune functions in rats with asthma and the effects of music therapy Early-life psychological stress exacerbates adult mouse asthma via the hypothalamus-pituitary-adrenal axis. J Asthma. 2010;47:526–31.

    CAS  PubMed  Google Scholar 

  103. Chida Y, Sudo N, Sonoda J, Hiramoto T, Kubo C. Early-life psychological stress exacerbates adult mouse asthma via the hypothalamus-pituitary-adrenal axis. Am J Respir Crit Care Med. 2007;175:316–22.

    CAS  PubMed  Google Scholar 

  104. Strine TW et al. Depression and anxiety in the United States: findings from the 2006 Behavioral Risk Factor Surveillance System. Psychiatr Serv. 2008;59:1383–90.

    PubMed  Google Scholar 

  105. Cheung TK et al. Gastroesophageal reflux disease is associated with poor asthma control, quality of life, and psychological status in Chinese asthma patients. Chest. 2009;135:1181–5.

    PubMed  Google Scholar 

  106. Sansone RA, Sansone LA. Asthma: wheezing, woes, and worries. Psychiatry. 2008;5:48–52.

    PubMed Central  PubMed  Google Scholar 

  107. Di Marco F et al. Close correlation between anxiety, depression, and asthma control. Respir Med. 2010;104:22–8.

    PubMed  Google Scholar 

  108. Cordina M, Fenech AG, Vassallo J, Cacciottolo JM. Anxiety and the management of asthma in an adult outpatient population. Ther Adv Respir Dis. 2009;3:227–33.

    PubMed  Google Scholar 

  109. von Hertzen LC. Maternal stress and T-cell differentiation of the developing immune system: possible implications for the development of asthma and atopy. J Allergy Clin Immunol. 2002;109:923–8.

    Google Scholar 

  110. Huang CC, Shih MC, Hsu NC, Chien Y, Chung BC. Fetal glucocorticoid synthesis is required for development of fetal adrenal medulla and hypothalamus feedback suppression. Endocrinology. 2012;153:4749–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Norbiato G, Bevilacqua M, Vago T, Clerici M. Glucocorticoids and Th-1, Th-2 type cytokines in rheumatoid arthritis, osteoarthritis, asthma, atopic dermatitis and AIDS. Clin Exp Rheumatol. 1997;15:315–23.

    CAS  PubMed  Google Scholar 

  112. Ramirez F, Fowell DJ, Puklavec M, Simmonds S, Mason D. Glucocorticoids promote a TH2 cytokine response by CD4+ T cells in vitro. J Immunol. 1996;156:2406–12.

    CAS  PubMed  Google Scholar 

  113. Groer MW, Humenick S, Hill PD. Characterizations and psychoneuroimmunologic implications of secretory immunoglobulin A and cortisol in preterm and term breast milk. J Perinat Neonatal Nurs. 1994;7:42–51.

    CAS  PubMed  Google Scholar 

  114. Murphy VE et al. Reduced 11beta-hydroxysteroid dehydrogenase type 2 activity is associated with decreased birth weight centile in pregnancies complicated by asthma. J Clin Endocrinol Metab. 2002;87:1660–8.

    CAS  PubMed  Google Scholar 

  115. Murphy VE et al. Maternal asthma is associated with reduced female fetal growth. Am J Respir Crit Care Med. 2003;168:1317–23.

    PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Dr. Cook-Mills has a patent pre-application, Compositions and Methods for the Treatment of Natal and Prenatal Conditions with Alpha-Tocopherol Pending.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human subjects performed by any of the authors.

Sources of Support

This study was supported by National Institutes of Health Grant R01 AT004837 (J.M.C-M).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan M. Cook-Mills.

Additional information

This article is part of the Topical Collection on Basic and Applied Science

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cook-Mills, J.M. Maternal Influences over Offspring Allergic Responses. Curr Allergy Asthma Rep 15, 1 (2015). https://doi.org/10.1007/s11882-014-0501-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11882-014-0501-1

Keywords

Navigation