Skip to main content
Log in

State-of-the-science assessment of non-asbestos amphibole exposure: Is there a cancer risk?

  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The distinction between amphibole asbestos fibers and non-asbestos amphibole particles has important implications for assessing potential cancer risks associated with exposure to amphibole asbestos or amphibole-containing products. Exposure to amphibole asbestos fibers can pose a cancer risk due to its ability to reside for long periods of time in the deep lung (i.e., biopersistence). In contrast, non-asbestos amphibole particles are usually cleared rapidly from the lung and do not pose similar respiratory risks even at high doses. Most regulatory and public health agencies, as well as scientific bodies, agree that non-asbestos amphiboles possess reduced biological (e.g., carcinogenic) activity. Although non-asbestos amphibole minerals have been excluded historically from Federal regulations, non-asbestos structures may be counted as asbestos fibers on the basis of dimensional criteria specified in analytical protocols. Given the potential to mischaracterize a non-asbestos structure as a “true” asbestos fiber, our objective was to assess whether exposure to non-asbestos amphiboles that may meet the dimensional criteria for counting as a fiber pose a cancer risk similar to amphibole asbestos. We reviewed analytical methods as well as the mineralogical, epidemiological, and toxicological literature for non-asbestos amphiboles. No evidence of demonstrable cancer effects from exposure to non-asbestos amphiboles that may be counted as fibers, under certain assessment protocols, was found. Data gaps (industrial hygiene data for amphibole-exposed cohorts), inconsistencies (analytical laboratory methods/protocols used to count fibers), and sources of potential bias from misclassification of exposure were identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Addison, J., & McConnell, E. E. (2008). A review of carcinogenicity studies of asbestos and non-asbestos tremolite and other amphiboles. Regulatory Toxicology and Pharmacology, 52(1 Suppl), S187–S199.

    Article  CAS  Google Scholar 

  • Agency for Toxic Substances and Disease Registry (ATSDR). (2003). Report on the expert panel on health effects of Asbestos and synthetic vitreous fibers: The influence of fiber length. March 17, 2003 (report prepared by Eastern Research Group). Available at: http://www.atsdr.cdc.gov/hac/asbestospanel/finalpart1.pdf. Accessed August 20, 2012.

  • Berndt, M. E., & Brice, W. C. (2003). The origins of public concern with taconite and human heath: Reserve mining and the asbestos case. Regulatory Toxicology and Pharmacology, 52, S31–S39.

    Article  Google Scholar 

  • Brown, D. P., Sanderson, W. & Fine, L. J. (1990). HHE Report No. HETA-90-390-2065, MHETA-86-012-2065. R. T. Vanderbilt Company, Gouverneur, New York. National Institute for Occupational Safety and Health.

  • Brown, D. K. K., & Zumwalde, R. (1986). Retrospective mortality study of underground gold mine workers. In D. Goldsmith, D. Winn, & C. Shy (Eds.), Silica, silicosis, and lung cancer (pp. 311–336). New York: Praeger.

    Google Scholar 

  • Brunner, W., Williams, A. N. & Bender, A. P. (2003). Exposures to commercial asbestos in northeastern Minnesota iron miners who developed mesothelioma. Resource document. Minnesota Department of Health. http://www.health.state.mn.us/divs/hpcd/cdee/occhealth/documents/MinersReport112503.pdf. Accessed on 20 December 2011.

  • Brunner, W. M., Williams, A. N., & Bender, A. P. (2008). Investigation of exposures to commercial asbestos in northeastern Minnesota iron miners who developed mesothelioma. Regulatory Toxicology and Pharmacology, S2, S116–S120.

    Google Scholar 

  • Campbell, W. J., Blake, R. L., Brown, L. L., Cather, E. E. & Sjoberg, J. J. (1977). Selected silicate minerals and their asbestiform varieties: Mineralogical definitions and identification-characterization. Bureau of mines information circular IC-8751. Bureau of Mines.

  • Campbell, W. J., Steel, E. B., Virta, R. L. & Eisner, M. H. (1979). Relationship of mineral habit to size characteristics for tremolite cleavage fragments and fibers. U.S. Bureau of Mines Report of Investigation No. 8367. Bureau of Mines.

  • Clark, T. C., Harrington, V. A., Asta, J., Morgan, W. K., & Sargent, E. N. (1980). Respiratory effects of exposure to dust in taconite mining and processing. American Review of Respiratory Disease, 121(6), 959–966.

    CAS  Google Scholar 

  • Cooper, W. C. (1984). An epidemiologic study of workers in the taconite mining and milling industry. Report prepared for American Iron Core Association.

  • Cooper, W. C., Wong, O., & Graebner, R. (1988). Mortality of workers in two Minnesota taconite mining and milling operations. Journal of Occupational Medicine, 30(6), 506–511.

    Article  CAS  Google Scholar 

  • Cooper, W. C., Wong, O., Trent, L. S., & Harris, F. (1992). An updated study of taconite miners and millers exposed to silica and non-asbestiform amphiboles. Journal of Occupational Medicine, 34(12), 1173–1180.

    CAS  Google Scholar 

  • Davis, J. M., Addison, J., Bolton, R. E., Donaldson, K., Jones, A. D., & Miller, B. G. (1985). Inhalation studies on the effects of tremolite and brucite dust in rats. Carcinogenesis, 6(5), 667–674.

    Article  CAS  Google Scholar 

  • Davis, J. M. G., Addison, J., McIntosh, C., Miller, B. G., & Niven, K. (1991). Variations in the carcinogenicity of tremolite dust samples of differing morphology. Annals of the New York Academy of Sciences, 643, 473–490.

    Article  CAS  Google Scholar 

  • Dement, J. M., Zumwalde, R. D., Gamble, J. F., Fellner, W. M., DeMeo, M. J., Brown, D. P. & Wagoner, J. K. (1980). Occupational exposure to talc containing asbestos: Morbidity, mortality, and environmental studies of miners and millers. NIOSH Technical Report-DHEW (NIOSH) Publication No. 80–115. National Institute for Occupational Safety and Health.

  • Dorling, M., & Zussman, J. (1987). Characteristics of asbestiform and non-asbestiform calcic amphiboles. Lithos, 20, 469–489.

    Article  CAS  Google Scholar 

  • Gamble, J. F. (1993). A nested case control study of lung cancer among New York talc workers. International Archives of Occupational and Environmental Health, 64(6), 449–456.

    Article  CAS  Google Scholar 

  • Gamble, J., & Gibbs, G. (2008). An evaluation of the risks of lung cancer and mesothelioma from exposure to amphibole cleavage fragments. Regulatory Toxicology and Pharmacology, 52(1), S154–S186.

    Article  CAS  Google Scholar 

  • Gillam, J. D., Dement, J. M., Lemen, R. A., Wagoner, J. K., Archer, V. E., & Blejer, H. P. (1976). Mortality patterns among hard rock gold miners exposed to an asbestiform mineral. Annals of the New York Academy of Sciences, 271, 336–344.

    Article  CAS  Google Scholar 

  • Higgins, I. T., Glassman, J. H., Oh, M. S., & Cornell, R. G. (1983). Mortality of reserve mining company employees in relation to taconite dust exposure. American Journal of Epidemiology, 118(5), 710–719.

    CAS  Google Scholar 

  • Honda, Y., Beall, C., Delzell, E., Oestenstad, K., Brill, I., & Matthews, R. (2002). Mortality among workers at a talc mining and milling facility. Annals of Occupational Hygiene, 46(7), 575–585.

    Article  CAS  Google Scholar 

  • Hull, M. J., Abraham, J. L., & Case, B. W. (2002). Mesothelioma among workers in asbestiform fiber-bearing talc mines in New York state. Annals of Occupational Hygiene, 46, 575–585.

    Article  Google Scholar 

  • IARC. (2009). A review of human carcinogens. Part C: Arsenic, metals, fibres, and dusts/IARC working group on the evaluation of carcinogenic risks to humans. Lyon, France, pp. 219–309.

  • Ilgren, E., & Chatfield, E. (1998). Coalinga fiber: A short amphibole-free chrysotile. Part 2: Evidence for lack of tumourigenic activity. Indoor Built Environment, 7, 18–31.

    CAS  Google Scholar 

  • Kelse, J. (2002). Testimony at MSHA hearing, Canton, NY May 29, 2002, http://www.msha.gov/regs/comments/asbestos/Transcripts/cantonny05292002.pdf. Accessed 20 February 2012. Mine Safety and Health Administration.

  • Kelse, J. (2010). Comments submitted to NIOSH Docket 099C, http://www.cdc.gov/niosh/docket/archive/pdfs/NIOSH-099C/0099C-041210-Kelse_J_sub.pdf. Accessed 20 February 2012. National Institute for Occupational Safety and Health.

  • Kelse, J., & Thompson, C. (1989). The regulatory and mineralogical definitions of asbestos and their impact on amphibole dust analysis. American Industrial Hygiene Assoc Journal, 50, 613–622.

    Article  Google Scholar 

  • Kleinfeld, M., Messite, J., Kooyman, O., & Zaki, M. H. (1967). Mortality among talc miners and millers in New York State. Archives of Environmental Health, 14(5), 663–667.

    Article  CAS  Google Scholar 

  • Kleinfeld, M., Messite, J., & Zaki, M. H. (1974). Mortality experiences among talc workers: A follow-up study. Journal of Occupational Medicine, 16(5), 345–349.

    CAS  Google Scholar 

  • Kusiak, R. A., Springer, J., Ritchie, A. C., & Muller, J. (1991). Carcinoma of the lung in Ontario gold miners: Possible etiological factors. British Journal of Industrial Medicine, 48(12), 808–817.

    CAS  Google Scholar 

  • Lamm, S. H., Levine, M. S., Starr, J. A., & Tirey, S. L. (1988). Analysis of excess lung cancer risk in short-term employees. American Journal of Epidemiology, 127(6), 1202–1209.

    CAS  Google Scholar 

  • Langer, A. M., & Nolan, R. P. (1987). Asbestos in play sand, correspondence. The New England Journal of Medicine, 316, 882.

    CAS  Google Scholar 

  • Langer, A. M., Nolan, R. P., Addison, J. (1991). Distinguishing between amphibole asbestos fibers and elongate cleavage fragments of their non-asbestos analogues: In R. C. Brown, J. A. Hoskins, N. F. Johnson (Eds.), Mechanisms in fibre carcinogenesis (pp. 253–267). New York: Plenum Press.

  • Leake, B. E., Wooley, A., Arps, C., Birch, W., Gilbert, M., & Grice, J. (1997). Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the international mineralogical association. Commission on New Minerals and Mineral Names, Canadian Mineralogist, 35, 219–246.

    CAS  Google Scholar 

  • Maimon, M. (2010). Letter to John Howard, April 9, 2010, NIOSH Roadmap Docket 099C. http://www.cdc.gov/niosh/docket/archive/pdfs/NIOSH-099C/0099C-040910-Maimon_M_sub.pdf. Accessed 20 February 2012. National Institute for Occupational Safety and Health.

  • McCrone, W. C. (1980). The asbestos particle atlas. Ann Arbor, MI: Ann Arbor Science Publishers, Inc.

    Google Scholar 

  • McDonald, J. C., Gibbs, G. W., Liddell, F. D., & McDonald, A. D. (1978). Mortality after long exposure to cummingtonite-grunerite. American Review of Respiratory Diseases, 118(2), 271–277.

    CAS  Google Scholar 

  • Middendorf, P. J. (2011). An overview of the NIOSH current intelligence bulletin, asbestos fibers and other elongated mineral particles: State of the science and roadmap for research. Presented at the Society of Mining, Metallurgy & Exploration, Denver, CO, March 2, 2011.

  • Miller, B. G., Jones, A. D., Searl, A., Buchanan, D., Cullen, R. T., Soutar, C. A., et al. (1999a). Influence of characteristics of inhaled fibers on development of tumours in the rat lung. Annals of Occupational Hygiene, 43, 167–179.

    CAS  Google Scholar 

  • Miller, B. G., Searl, A., Davis, J. M. G., Donaldson, K., Cullen, R. T., Bolton, R. E., et al. (1999b). Influence of fibre length, dissolution and biopersistence on the production of mesothelioma in the rat peritoneal cavity. Annals of Occupational Hygiene, 43, 155–166.

    CAS  Google Scholar 

  • Minnesota Department of Health, Cancer Surveillance System. (1997). Cancer rates and trends in Northeastern Minnesota. MCSS Epidemiology Report 97:1. Available at: http://www.health.state.mn.us/divs/hpcd/cdee/occhealth/documents/NE_Cancer97.pdf.

  • NIOSH. (2011). Asbestos fibers and other elongate mineral particles: State of the science and roadmap for research. DHHS Publication No. 2011-159. National Institute for Occupational Safety and Health (NIOSH).

  • NTP. (1993). NTP toxicology and carcinogenesis studies of talc (CAS No. 14807-96-6)(Non-Asbestiform) in F344/N Rats and B6C3F1 Mice (Inhalation studies). National Toxicol Program Technical Report Ser, 421, 1–287. National Toxicology Program (NTP).

  • OSHA. (1994). Occupational exposure to asbestos: Final rule. Federal Register, 59, 40964–41162.

    Google Scholar 

  • OSHA. (2010). Appendix J to 29 CFR § 1910.1001-Polarized light microscopy of asbestos: Non-mandatory method. Occupational Safety and Health Administration (OSHA).

  • Perkins, R. L., & Harvey, B. W. (1993). Method for the determination of asbestos in bulk building materials. EPA/600/R-93/116. U.S. Environmental Protection Agency,

  • Pott, F., Huth, F., & Friedrichs, K. H. (1974). Tumorigenic effects of fibrous dusts in experimental animals. Environmental Health Perspectives, 9, 313–315.

    CAS  Google Scholar 

  • Pott, F., Roller, M., Rippe, R. M., Germann, P.-G., & Bellmann, B. (1991). Tumours by the intraperitoneal and intrapleural routes and their significance for the classification of mineral fibers. In R. C. Brown, J. A. Hoskins, & N. F. Johnson (Eds.), Mechanisms in fiber carcinogenesis (pp. 547–565). New York: Plenum Press.

    Chapter  Google Scholar 

  • Pott, F., Roller, M., Ziem, U., Reiffer, F.-J., Bellmann, B., Rosenbruch, M., et al. (1989). Carcinogenicity studies on natural and man-made fibers with the intraperitoneal test in rats. In J. Bignon, J. Peto, & R. Saracci (Eds.), Non-occupational exposure to mineral fibers (Vol. 90, pp. 173–179). France: IARC Scientific Publications.

    Google Scholar 

  • Price, B. (2010). Industrial-grade talc exposure and the risk of mesothelioma. Critical Reviews in Toxicology, 40, 513–530.

    Article  CAS  Google Scholar 

  • Ross, M., Kuntze, R. A., & Clifton, R. A. (1984). A definition for asbestos. In B. Levadie (Ed.), Definitions for asbestos and other health-related silicates, ASTM STP 834 (pp. 139–147). Philadelphia: American Society for Testing and Materials.

    Chapter  Google Scholar 

  • Saltzman, L. E., & Hatlelid, K. M. (2000). CPSC staff report on asbestos fibers in children’s crayons. Washington, DC: U.S. Consumer Protection Safety Commission.

    Google Scholar 

  • Selevan, S. G., Dement, J. M., Wagoner, J. K., & Froines, J. R. (1979). Mortality patterns among miners and millers of non-asbestiform talc: Preliminary report. Journal of Environmental Pathology and Toxicology, 2, 273–284.

    CAS  Google Scholar 

  • Skinner, H. C. W., Ross, M., & Frondel, C. (1988). Appendix 1. In asbestos and other fibrous materials. Oxford: Oxford University Press.

    Google Scholar 

  • Smith, W. E., Hubert, D. D., Sobel, H. J., & Marquet, E. (1979). Biologic tests of tremolite in hamsters. In J. A. Dement & R. A. Lemen (Eds.), Dusts and disease (pp. 335–339). Park Forest South, IL: Pathotox Publishers, Inc.

    Google Scholar 

  • Stanton, M. F., Layard, M., Tegeris, A., Miller, E., May, M., Morgan, E., et al. (1981). Relation of particle dimension to carcinogenicity in amphibole asbestoses and other fibrous minerals. Journal of the National Cancer Institute, 67, 965–975.

    CAS  Google Scholar 

  • Steenland, K., & Brown, D. (1995). Mortality study of gold miners exposed to silica and non-asbestiform amphibole minerals: An update with 14 more years of follow-up. American Journal of Industrial Medicine, 27(2), 217–229.

    Article  CAS  Google Scholar 

  • Stille, W. T., & Tabershaw, I. R. (1982). The mortality experience of upstate New York talc workers. Journal of Occupational Medicine, 24(6), 480–484.

    CAS  Google Scholar 

  • USEPA. (1992). Health assessment document for talc. EPA-600/8-91/217. U.S. Environmental Protection Agency (USEPA).

  • Van Orden, D. R., Allison, K. A., & Lee, R. J. (2008). Differentiating amphibole asbestos from non-asbestos in a complex mineral environment. Indoor and Built Environment, 17, 58–68.

    Article  CAS  Google Scholar 

  • Virta, R. L., Shedd, K. B., Wylie, A. G., & Snyder, J. G. (1983). Size and Shape characteristics of amphibole asbestos (amosite) and amphibole cleavage fragments (Actinolite, Cummingtonite) collected on occupational air monitoring filters. In V. A. Marple & B. Y. H. Liu (Eds.), Aerosols in the mining & industrial work environments (Vol. 2, pp. 633–643). Ann Arbor: Ann Arbor Science.

    Google Scholar 

  • Wagner, J. C., Chamberlain, M., Brown, R. C., Berry, G., Pooley, F. D., Davies, R., et al. (1982). Biological effects of tremolite. British Journal of Cancer, 45, 352–360.

    Article  CAS  Google Scholar 

  • Wergeland, W., Andersen, A., & Baerheim, A. (1990). Morbidity and mortality in talc-exposed workers. American Journal of Industrial Medicine, 17, 505–513.

    Article  CAS  Google Scholar 

  • Wylie, A. G. (1990). Discriminating amphibole cleavage fragments from asbestos: rationale and methodology: In S. Masuda, & K. Takahashi (Eds.) Aerosols: Science, industry, health, and environment. In Proceedings of the third international aerosol conference, September 2427, 1990, Kyoto International Conference Hall (pp. 1065–1069). Oxford: Pergamon Press.

  • Wylie, A. G., Bailey, K. F., Kelse, J. W., & Lee, R. J. (1993). The importance of width in asbestos fiber carcinogenicity and its implications for public policy. American Industrial Hygiene Association Journal, 54(5), 239–252.

    Article  CAS  Google Scholar 

  • Zoltai, T. (1977). Mineralogical aspects: History of asbestos-related mineralogical terminology. In Proceedings of the workshop on asbestos: Definitions and measurement methods held at NBS, Gaithersburg, MD, July 1977. NBS Special Publication 506.

Download references

Acknowledgments

The authors acknowledge the support of Environ Corporation Center for Exposure Reconstruction Analysis and Health Sciences and RJ Lee Group, and contributions of John Imse, Daniel Podraza and William Thompson, and reviewers Ken Mundt, James Poole, Fred Boelter and Angela Harris. They also acknowledge the testimony of R. Adams and D. Van Orden in litigation matters related to asbestos exposures and the testimony of C. Williams in litigation matters related to exposure, dose, and health sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cris Williams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, C., Dell, L., Adams, R. et al. State-of-the-science assessment of non-asbestos amphibole exposure: Is there a cancer risk?. Environ Geochem Health 35, 357–377 (2013). https://doi.org/10.1007/s10653-012-9500-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-012-9500-0

Keywords

Navigation