Skip to main content
Log in

Uranium carcinogenicity in humans might depend on the physical and chemical nature of uranium and its isotopic composition: results from pilot epidemiological study of French nuclear workers

  • Original paper
  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

Objective

To study the cancer risk related to protracted, low-dose exposure to different industrial uranium compounds, paying attention to their isotopic composition and solubility.

Methods

Two thousand and ninety-seven workers employed at the AREVA NC uranium processing plant (France) were followed up for mortality from 1960 to 2006. Historical exposure to uranium and other carcinogenic chemical and physical pollutants was assessed on the basis of the plant-specific job-exposure matrix. For each type of uranium, Cox regression models stratified on sex and calendar period, and adjusted for socioeconomic status and potentially confounding co-exposures were used to estimate hazard ratios (HRs) for mortality from lung cancer (53 deaths) and lymphatic and hematopoietic tissue malignancies (21 deaths).

Results

We observed that exposure to reprocessed uranium entails increasing risks of mortality from lung cancer and lymphatic and hematopoietic malignancies (the most significant HR being respectively 1.14 (95% CI: 1.00–1.31) and 1.20 (95% CI: 1.01–1.43) per unit of a time-lagged log-transformed continuous exposure scores), and that the HRs tend to increase with decreasing solubility of the compounds.

Conclusion

Our results suggest that uranium carcinogenicity may depend on isotopic composition and solubility of uranium compounds. This study is the first to show the carcinogenic effect of slowly soluble reprocessed uranium on two uranium target organs. This finding is consistent with data from epidemiological and experimental studies on similar compounds but need to be confirmed in the more powerful dose–response analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. United Nations Scientific Committee on the Effects of Atomic Radiation (2000) Report to the General Assembly Unscear. United Nations

  2. IARC (2001) Ionizing radiation, part 2: some internally deposited radionuclides. Int Agency Res Cancer Monogr Eval Carcinog Risks Hum 78:1–559

    Google Scholar 

  3. Auvinen A, Kurttio P, Pekkanen J, Pukkala E, Ilus T, Salonen L (2002) Uranium and other natural radionuclides in drinking water and risk of leukemia: a case-cohort study in Finland. Cancer Causes Control 13:825–829

    Article  PubMed  Google Scholar 

  4. Kurttio P, Komulainen H, Leino A, Salonen L, Auvinen A, Saha H (2005) Bone as a possible target of chemical toxicity of natural uranium in drinking water. Environ Health Perspect 113:68–72

    Article  PubMed  CAS  Google Scholar 

  5. Kurttio P, Salonen L, Ilus T, Pekkanen J, Pukkala E, Auvinen A (2006) Well water radioactivity and risk of cancers of the urinary organs. Environ Res 102:333–338

    Article  PubMed  CAS  Google Scholar 

  6. Guseva Canu I, Ellis ED, Tirmarche M (2008) Cancer risk in nuclear workers occupationally exposed to uranium-emphasis on internal exposure. Health Phys 94:1–17

    Article  CAS  Google Scholar 

  7. United Nations Scientific Committee on the Effects of Atomic Radiation (2006) Report to the General Assembly Unscear.United Nations

  8. Bramman JI, Sharpe RM, Thom D, Yates G (1968) Metallic fission-product inclusions in irradiated oxide fuels. J Nucl Mater 25:201–215

    Article  Google Scholar 

  9. Guseva Canu I, Cardis E, Metz-Flamant C et al (2010) French cohort of the uranium processing workers: mortality pattern after 30-year follow-up. Int Arch Occup Environ Health 83:301–308

    Google Scholar 

  10. Guseva Canu I, Jacob S, Cardis E et al (2010) Reprocessed uranium exposure and lung cancer risk. Health Phys 99:308–313

    Article  Google Scholar 

  11. Guseva Canu I, Molina G, Goldberg M et al (2008) Development of a job exposure matrix for the epidemiological follow-up of workers in the French nuclear industry. Rev Epidemiol Sante Publique 56:21–29

    Article  PubMed  CAS  Google Scholar 

  12. Guseva Canu I, Paquet F, Goldberg M et al (2009) Comparative assessing for radiological, chemical, and physical exposures at the French uranium conversion plant: is uranium the only stressor? Int J Hyg Environ Health 212:398–413

    Article  PubMed  Google Scholar 

  13. Publication 66 (1994) Human respiratory tract model for radiological protection. Pergamon Press, Oxford

  14. Chazel V, Houpert P, Ansoborlo E, Henge-Napoli MH, Paquet F (2000) Variation of solubility, biokinetics and dose coefficient of industrial uranium oxides according to specific surface area. Radiat Prot Dosim 88:223–231

    CAS  Google Scholar 

  15. Chazel V, Houpert P, Paquet F, Ansoborlo E (2001) Effect of absorption parameters on calculation of the dose coefficient: example of classification of industrial uranium compounds. Radiat Prot Dosim 94:261–268

    CAS  Google Scholar 

  16. Guseva Canu I, Laurier D, Caër-Lorho S et al (2010) Characterisation of protracted low-level exposure to uranium in the workplace: a comparison of two approaches. Int J Hyg Environ Health 213:270–277

    Article  PubMed  CAS  Google Scholar 

  17. Birchall A, Jarvis NS, Peace MS, Riddell AE, Battersby WP (1998) The IMBA suite: integrated modules for bioassay analysis. Radiat Prot Dosim 79:107–110

    Google Scholar 

  18. General guidelines for the assessment of internal dose from monitoring data (project IDEAS—EU contract no FIKR-CT2001-00160). Research Center, Karlsruhe 2006

  19. Galle P, Berry JP, Galle C (1992) Role of alveolar macrophages in precipitation of mineral elements inhaled as soluble aerosols. Environ Health Perspect 97:145–147

    Article  PubMed  CAS  Google Scholar 

  20. Stober W, Morrow PE, Hoover MD (1989) Compartmental modeling of the long-term retention of insoluble particles deposited in the alveolar region of the lung. Fundam Appl Toxicol 13:823–842

    Article  PubMed  CAS  Google Scholar 

  21. Stober W, Morrow PE, Morawietz G (1990) Alveolar retention and clearance of insoluble particles in rats simulated by a new physiology-oriented compartmental kinetics model. Fundam Appl Toxicol 15:329–349

    Article  PubMed  CAS  Google Scholar 

  22. Korn EL, Graubard BI, Midthune D (1997) Time-to-event analysis of longitudinal follow-up of a survey: choice of the time-scale. Am J Epidemiol 145:72–80

    PubMed  CAS  Google Scholar 

  23. Walsh L (2007) A short review of model selection techniques for radiation epidemiology. Radiat Environ Biophys 46:205–213

    Article  PubMed  Google Scholar 

  24. Harley NH, Foulkes EC, Hilborne LH, Hudson A, Anthony CR (1999) A review of the scientific literature as it pertains to Gulf war illness. RAND’s National Defense Research Institute, Santa Monica, CA

  25. Gilbert ES, Koshurnikova NA, Sokolnikov ME et al (2004) Lung cancer in Mayak workers. Radiat Res 162:505–516

    Article  PubMed  CAS  Google Scholar 

  26. Koshurnikova NA, Bolotnikova MG, Ilyin LA et al (1998) Lung cancer risk due to exposure to incorporated plutonium. Radiat Res 149:366–371

    Article  PubMed  CAS  Google Scholar 

  27. Kreisheimer M, Sokolnikov ME, Koshurnikova NA et al (2003) Lung cancer mortality among nuclear workers of the Mayak facilities in the former Soviet Union. An updated analysis considering smoking as the main confounding factor. Radiat Environ Biophys 42:129–135

    Article  PubMed  CAS  Google Scholar 

  28. Sokolnikov ME, Gilbert ES, Preston DL et al (2008) Lung, liver and bone cancer mortality in Mayak workers. Int J Cancer 123:905–911

    Article  PubMed  CAS  Google Scholar 

  29. Jacob V, Jacob P, Meckbach R, Romanov SA, Vasilenko EK (2005) Lung cancer in Mayak workers: interaction of smoking and plutonium exposure. Radiat Environ Biophys 44:119–129

    Article  PubMed  CAS  Google Scholar 

  30. Tokarskaya ZB, Scott BR, Zhuntova GV et al (2002) Interaction of radiation and smoking in lung cancer induction among workers at the Mayak nuclear enterprise. Health Phys 83:833–846

    Article  PubMed  CAS  Google Scholar 

  31. Omar RZ, Barber JA, Smith PG (1999) Cancer mortality and morbidity among plutonium workers at the Sellafield plant of British Nuclear Fuels. Br J Cancer 79:1288–1301

    Article  PubMed  CAS  Google Scholar 

  32. Wiggs LD, Johnson ER, Cox-DeVore CA, Voelz GL (1994) Mortality through 1990 among white male workers at the Los Alamos National Laboratory: considering exposures to plutonium and external ionizing radiation. Health Phys 67:577–588

    Article  PubMed  CAS  Google Scholar 

  33. Brown SC, Schonbeck MF, McClure D et al (2004) Lung cancer and internal lung doses among plutonium workers at the Rocky Flats Plant: a case–control study. Am J Epidemiol 160:163–172

    Article  PubMed  Google Scholar 

  34. Wing S, Richardson D, Wolf S, Mihlan G (2004) Plutonium-related work and cause-specific mortality at the United States Department of Energy Hanford Site. Am J Ind Med 45:153–164

    Article  PubMed  CAS  Google Scholar 

  35. Shilnikova NS, Preston DL, Ron E et al (2003) Cancer mortality risk among workers at the Mayak nuclear complex. Radiat Res 159:787–798

    Article  PubMed  CAS  Google Scholar 

  36. Atkinson WD, Law DV, Bromley KJ, Inskip HM (2004) Mortality of employess of the United Kingdom atomic energy authority, 1946–1997. Occup Environ Med 61:577–585

    Article  PubMed  CAS  Google Scholar 

  37. Baysson H, Laurier D, Tirmarche M, Valenty M, Giraud JM (2000) Epidemiological response to a suspected excess of cancer among a group of workers exposed to multiple radiological and chemical hazards. Occup Environ Med 57:188–194

    Article  PubMed  CAS  Google Scholar 

  38. Boice JD, Cohen SS, Mumma MT et al (2006) Mortality among radiation workers at Rocketdyne (Atomic International), 1948–1999. Radiat Res 165:98–115

    Article  Google Scholar 

  39. Checkoway H, Pearce N, Crawford-Brown DJ, Cragle DL (1988) Radiation doses and cause-specific mortality among workers at a nuclear materials fabrication plant. Am J Epidemiol 127:255–266

    PubMed  CAS  Google Scholar 

  40. Cragle DL, McLain RW, Qualters JR et al (1988) Mortality among workers at a nuclear fuels production facility. Am J Ind Med 14:379–401

    Article  PubMed  CAS  Google Scholar 

  41. Loomis DP, Wolf SH (1996) Mortality of workers at a nuclear materials production plant at Oak Ridge, Tennessee, 1947–1990. Am J Ind Med 29:131–141

    Article  PubMed  CAS  Google Scholar 

  42. Lopez-Abente G, Aragones N, Pollan M, Ruiz M, Gandarillas A (1999) Leukemia, lymphomas, and myeloma mortality in the vicinity of nuclear power plants and nuclear fuel facilities in Spain. Cancer Epidemiol Biomark Prev 8:925–934

    CAS  Google Scholar 

  43. Pinkerton LE, Bloom TF, Hein MJ, Ward EM (2004) Mortality among a cohort of uranium mill workers: an update. Occup Environ Med 61:57

    Article  PubMed  CAS  Google Scholar 

  44. Ritz B (1999) Cancer mortality among workers exposed to chemicals during uranium processing. J Occup Environ Med 41:556–566

    Article  PubMed  CAS  Google Scholar 

  45. Ritz B (1999) Radiation exposure and cancer mortality in uranium processing workers. Epidemiology 10:531–538

    Article  PubMed  CAS  Google Scholar 

  46. Ritz B, Morgenstern H, Crawford-Brown D, Young B (2000) The effects of internal radiation exposure on cancer mortality in nuclear workers at Rocketdyne/Atomics International. Environ Health Perspect 108:743–751

    Article  PubMed  CAS  Google Scholar 

  47. Chan C, Hughes TS, Muldoon S et al (2010) Mortality patterns among Paducah Gaseous Diffusion Plant workers. J Occup Environ Med 52:725–732

    Article  PubMed  Google Scholar 

  48. Yiin JH, Anderson JL, Daniels RD et al (2009) A nested case–control study of multiple myeloma risk and uranium exposure among workers at the Oak Ridge Gaseous Diffusion Plant. Radiat Res 171:637–645

    Article  PubMed  CAS  Google Scholar 

  49. Lippmann M, Yeates DB, Albert RE (1980) Deposition, retention, and clearance of inhaled particles. Br J Ind Med 37:337–362

    PubMed  CAS  Google Scholar 

  50. Oberdorster G, Ferin J, Lehnert BE (1994) Correlation between particle size, in vivo particle persistence, and lung injury. Environ Health Perspect 102(Suppl 5):173–179

    Article  PubMed  Google Scholar 

  51. Bailey MR, Ansoborlo E, Guilmette RA, Paquet F (2007) Updating the ICRP human respiratory tract model. Radiat Prot Dosim 127:31–34

    Article  CAS  Google Scholar 

  52. Lang S, Servomaa K, Kosma VM, Rytomaa T (1995) Biokinetics of nuclear fuel compounds and biological effects of nonuniform radiation. Environ Health Perspect 103:920–934

    Article  PubMed  CAS  Google Scholar 

  53. Batchelor AL, Jenner TJ, Papworth DG (1982) Influence of macrophages on microdistribution of inhaled UO2 aerosol in rat lung. Phys Med Biol 27:949–957

    Article  PubMed  CAS  Google Scholar 

  54. Henge-Napoli MH, Ansoborlo E, Claraz M, Berry JP, Cheynet MC (1996) Role of alveolar macrophages in the dissolution of two different industrial uranium oxides. Cell Mol Biol (Noisy-le-grand) 42:413–420

    CAS  Google Scholar 

  55. Muller HL, Taya A, Drosselmeyer E et al (1989) Cellular aspects of retention and transport of inhaled soluble and insoluble actinide compounds in the rat lung. Sci Total Environ 83:239–251

    Article  PubMed  CAS  Google Scholar 

  56. Leach LJ, Maynard EA, Hodge HC et al (1970) A five-year inhalation study with natural uranium dioxide (UO 2) dust. I. Retention and biologic effect in the monkey, dog and rat. Health Phys 18:599–612

    Article  PubMed  CAS  Google Scholar 

  57. Leach LJ, Yuile CL, Hodge HC (1973) A five year inhalation study with natural uranium dioxide (UO2) dust. II. Postexposure retention and biologic effects in the monkey, dog and rat. Health Phys 25:239–258

    Article  PubMed  CAS  Google Scholar 

  58. Lataillade G, Verry M, Rateau G, Metivier H, Masse R (1995) Translocation of plutonium from rat and monkey lung after inhalation of industrial plutonium oxide and mixed uranium and plutonium oxide. Int J Radiat Biol 67:373–380

    Article  PubMed  CAS  Google Scholar 

  59. Guilmette RA, Muggenburg BA, Hahn FF (1987) Dosimetry of 239Pu in dogs that inhaled monodisperse aerosols of 239PuO2. Radiat Res 110:199–218

    Article  PubMed  CAS  Google Scholar 

  60. Morris KJ, Barker CL, Batchelor AL, Khanna P (1992) Dosimetric implications of pulmonary macrophage clusters observed within lungs of rats that have inhaled enriched UO2 particles. Environ Health Perspect 97:201–208

    PubMed  CAS  Google Scholar 

  61. Beutler E, Lichtman MA, Coller BS, Kipps TJ, Seligsohn U (2000) Williams Hematology, 6th edn. McGraw-Hill Professional, New York

  62. Thorbecke GJ, Amin AR, Tsiagbe VK (1994) Biology of germinal centers in lymphoid tissue. Faseb J 8:832–840

    PubMed  CAS  Google Scholar 

  63. Griffiths NM, Van der Meeren A, Fritsch P, Abram MC, Bernaudin JF, Poncy JL (2010) Late-occurring pulmonary pathologies following inhalation of mixed oxide (uranium + plutonium oxide) aerosol in the rat. Health Phys 99:347–356

    Article  PubMed  CAS  Google Scholar 

  64. Van der Meeren A, Gremy O (2010) Isotopic and elemental composition of plutonium/americium oxides influence pulmonary and extra-pulmonary distribution after inhalation in rats. Health Phys 99:380–387

    Article  PubMed  Google Scholar 

  65. Veremeyeva G, Akushevich I, Pochukhailova T et al (2010) Long-term cellular effects in humans chronically exposed to ionizing radiation. Health Phys 99:337–346

    Article  PubMed  CAS  Google Scholar 

  66. Quantification of cancer and non-cancer risks associated with multiple chronic radiation exposures: epidemiological studies, organ dose calculation and risk assessment. Final scientific report in the Frame of the European project “Alpha Risk” no 516483, period 2005–2009. European Commission 2009

Download references

Acknowledgments

The authors would like to thank the Chief Medical Officer of the AREVA group, Dr. Acker, as well as all people from the AREVA NC Pierrelatte plant who took part in this study. We gratefully acknowledge Dr. Blanchardon and Dr. Paquet from the IRSN for helping us to understand the biological mechanism of reprocessed uranium compounds. We also thank our colleague, Mr. Samson, from the IRSN and our colleagues from the “Alpha risk” project network for their advice and their review of this paper. This work was funded by the IRSN and AREVA (PIC-Epidemiology 2006/2009 grant), with partial financial support from the EC (EURATOM FIP6-516483 grant).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Guseva Canu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guseva Canu, I., Jacob, S., Cardis, E. et al. Uranium carcinogenicity in humans might depend on the physical and chemical nature of uranium and its isotopic composition: results from pilot epidemiological study of French nuclear workers. Cancer Causes Control 22, 1563–1573 (2011). https://doi.org/10.1007/s10552-011-9833-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10552-011-9833-5

Keywords

Navigation