Skip to main content

Advertisement

Log in

Heavy metal poisoning: the effects of cadmium on the kidney

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

The heavy metal cadmium (Cd) is known to be a widespread environmental contaminant and a potential toxin that may adversely affect human health. Exposure is largely via the respiratory or gastrointestinal tracts; important non-industrial sources of exposure are cigarette smoke and food (from contaminated soil and water). The kidney is the main organ affected by chronic Cd exposure and toxicity. Cd accumulates in the kidney as a result of its preferential uptake by receptor-mediated endocytosis of freely filtered and metallothionein bound Cd (Cd-MT) in the renal proximal tubule. Internalised Cd-MT is degraded in endosomes and lysosomes, releasing free Cd2+ into the cytosol, where it can generate reactive oxygen species (ROS) and activate cell death pathways. An early and sensitive manifestation of chronic Cd renal toxicity, which can be useful in individual and population screening, is impaired reabsorption of low molecular weight proteins (LMWP) (also a receptor-mediated process in the proximal tubule) such as retinol binding protein (RBP). This so-called ‘tubular proteinuria’ is a good index of proximal tubular damage, but it is not usually detected by routine clinical dipstick testing for proteinuria. Continued and heavy Cd exposure can progress to the clinical renal Fanconi syndrome, and ultimately to renal failure. Environmental Cd exposure may be a significant contributory factor to the development of chronic kidney disease, especially in the presence of other co-morbidities such as diabetes or hypertension; therefore, the sources and environmental impact of Cd, and efforts to limit Cd exposure, justify more attention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akesson A, Lundh T, Vahter M, Bjellerup P, Lidfeldt J, Nerbrand C, Samsioe G, Stromberg U, Skerfving S (2005) Tubular and glomerular kidney effects in Swedish women with low environmental cadmium exposure. Environ Health Perspect 113:1627–1631

    Article  PubMed  Google Scholar 

  • Arpadjan S, Celik G, Taskesen S, Gucer S (2008) Arsenic, cadmium and lead in medicinal herbs and their fractionation. Food Chem Toxicol 46:2871–2875

    Article  PubMed  CAS  Google Scholar 

  • Bagchi D, Bagchi M, Hassoun EA, Stohs SJ (1996) Cadmium-induced excretion of urinary lipid metabolites, DNA damage, glutathione depletion, and hepatic lipid peroxidation in Sprague-Dawley rats. Biol Trace Elem Res 52:143–154

    Article  PubMed  CAS  Google Scholar 

  • Bernard A (2008) Biomarkers of metal toxicity in population studies: research potential and interpretation issues. J Toxicol Environ Health A 71:1259–1265

    Article  PubMed  CAS  Google Scholar 

  • Bernard A, Lauwerys R (1990) Early markers of cadmium nephrotoxicity: biological significance and predictive value. Toxicol Environ Chem 27:65–72

    Article  CAS  Google Scholar 

  • Bernard AM, Vyskocil AA, Mahieu P, Lauwerys RR (1987) Assessment of urinary retinol-binding protein as an index of proximal tubular injury. Clin Chem 33:775–779

    PubMed  CAS  Google Scholar 

  • Bernard AM, Roels H, Cardenas A, Lauwerys R (1990) Assessment of urinary protein 1 and transferrin as early markers of cadmium nephrotoxicity. Br J Ind Med 47:559–565

    PubMed  CAS  Google Scholar 

  • Bernard A, Thielemans N, Roels H, Lauwerys R (1995) Association between NAG-B and cadmium in urine with no evidence of a threshold. Occup Environ Med 52:177–180

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharyya MH, Sacco-Gibson NA, Peterson DP (1992) Cadmium-induced bone loss: increased susceptibility in female beagles after ovariectomy. IARC Sci Publ 118:279–286

    PubMed  CAS  Google Scholar 

  • Buchet JP, Lauwerys R, Roels H, Bernard A, Bruaux P, Claeys F, Ducoffre G, De Plaen P, Staessen J, Amery A (1990) Renal effects of cadmium body burden of the general population. Lancet 336:699–702

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Lei L, Jin T, Nordberg M, Nordberg GF (2006) Plasma metallothionein antibody, urinary cadmium, and renal dysfunction in a Chinese type 2 diabetic population. Diabetes Care 29:2682–2687

    Article  PubMed  CAS  Google Scholar 

  • Davey PG, Gosling P (1982) Beta 2-microglobulin instability in pathological urine. Clin Chem 28:1330–1333

    PubMed  CAS  Google Scholar 

  • de Burbure C, Buchet JP, Leroyer A, Nisse C, Haguenoer JM, Mutti A, Smerhovsky Z, Cikrt M, Trzcinka-Ochocka M, Razniewska G, Jakubowski M, Bernard A (2006) Renal and neurologic effects of cadmium, lead, mercury, and arsenic in children: evidence of early effects and multiple interactions at environmental exposure levels. Environ Health Perspect 114:584–590

    Article  PubMed  CAS  Google Scholar 

  • Desagher S, Martinou JC (2000) Mitochondria as the central control point of apoptosis. Trends Cell Biol 10:369–377

    Article  PubMed  CAS  Google Scholar 

  • Dreisbach RH (1983) Handbook of poisoning: prevention, diagnosis and treatment, 11 edn. Lange Medical Publications

  • Elinder CG, Kjellstrom T, Lind B, Linnman L, Piscator M, Sundstedt K (1983) Cadmium exposure from smoking cigarettes: variations with time and country where purchased. Environ Res 32:220–227

    Article  PubMed  CAS  Google Scholar 

  • Everett CJ, Frithsen IL (2008) Association of urinary cadmium and myocardial infarction. Environ Res 106:284–286

    Article  PubMed  CAS  Google Scholar 

  • Flanagan PR, McLellan JS, Haist J, Cherian G, Chamberlain MJ, Valberg LS (1978) Increased dietary cadmium absorption in mice and human subjects with iron deficiency. Gastroenterology 74:841–846

    PubMed  CAS  Google Scholar 

  • Friberg L (1952) Further investigations on chronic cadmium poisoning; a study on rabbits with radioactive cadmium. AMA Arch Ind Hyg Occup Med 5:30–36

    CAS  Google Scholar 

  • Greipp PR, Katzmann JA, O’Fallon WM, Kyle RA (1988) Value of beta 2-microglobulin level and plasma cell labeling indices as prognostic factors in patients with newly diagnosed myeloma. Blood 72:219–223

    PubMed  CAS  Google Scholar 

  • Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, Nussberger S, Gollan JL, Hediger MA (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388:482–488

    Article  PubMed  CAS  Google Scholar 

  • Halatek T, Gromadzinska J, Wasowicz W, Rydzynski K (2005) Serum clara-cell protein and beta2-microglobulin as early markers of occupational exposure to nitric oxides. Inhal Toxicol 17:87–97

    Article  PubMed  CAS  Google Scholar 

  • Haswell-Elkins M, Satarug S, O’Rourke P, Moore M, Ng J, McGrath V, Walmby M (2008) Striking association between urinary cadmium level and albuminuria among Torres Strait Islander people with diabetes. Environ Res 106:379–383

    Article  PubMed  CAS  Google Scholar 

  • Hellstrom L, Elinder CG, Dahlberg B, Lundberg M, Jarup L, Persson B, Axelson O (2001) Cadmium exposure and end-stage renal disease. Am J Kidney Dis 38:1001–1008

    Article  PubMed  CAS  Google Scholar 

  • Hendrick DJ (1996) Occupational and chronic obstructive pulmonary disease (COPD). Thorax 51:947–955

    Article  PubMed  CAS  Google Scholar 

  • Hong F, Jin T, Zhang A (2004) Risk assessment on renal dysfunction caused by co-exposure to arsenic and cadmium using benchmark dose calculation in a Chinese population. Biometals 17:573–580

    Article  PubMed  CAS  Google Scholar 

  • Horiguchi H, Sato M, Konno N, Fukushima M (1996) Long-term cadmium exposure induces anemia in rats through hypoinduction of erythropoietin in the kidneys. Arch Toxicol 71:11–19

    Article  PubMed  CAS  Google Scholar 

  • Horiguchi H, Oguma E, Sasaki S, Miyamoto K, Ikeda Y, Machida M, Kayama F (2004) Comprehensive study of the effects of age, iron deficiency, diabetes mellitus, and cadmium burden on dietary cadmium absorption in cadmium-exposed female Japanese farmers. Toxicol Appl Pharmacol 196:114–123

    Article  PubMed  CAS  Google Scholar 

  • Il’yasova D, Schwartz GG (2005) Cadmium and renal cancer. Toxicol Appl Pharmacol 207:179–186

    Article  PubMed  CAS  Google Scholar 

  • Inaba T, Kobayashi E, Suwazono Y, Uetani M, Oishi M, Nakagawa H, Nogawa K (2005) Estimation of cumulative cadmium intake causing Itai-itai disease. Toxicol Lett 159:192–201

    Article  PubMed  CAS  Google Scholar 

  • Jacquillet G, Barbier O, Cougnon M, Tauc M, Namorado MC, Martin D, Reyes JL, Poujeol P (2006) Zinc protects renal function during cadmium intoxication in the rat. Am J Physiol 290:F127–F137

    CAS  Google Scholar 

  • Jacquillet G, Barbier O, Rubera I, Tauc M, Borderie A, Namorado MC, Martin D, Sierra G, Reyes JL, Poujeol P, Cougnon M (2007) Cadmium causes delayed effects on renal function in the offspring of cadmium-contaminated pregnant female rats. Am J Physiol 293:F1450–F1460

    Article  CAS  Google Scholar 

  • Jarup L, Elinder CG (1993) Incidence of renal stones among cadmium exposed battery workers. Br J Ind Med 50:598–602

    PubMed  CAS  Google Scholar 

  • Jarup L, Rogenfelt A, Elinder CG, Nogawa K, Kjellstrom T (1983) Biological half-time of cadmium in the blood of workers after cessation of exposure. Scand J Work Environ Health 9:327–331

    PubMed  CAS  Google Scholar 

  • Jarup L, Persson B, Elinder CG (1995) Decreased glomerular filtration rate in solderers exposed to cadmium. Occup Environ Med 52:818–822

    Article  PubMed  CAS  Google Scholar 

  • Jarup L, Berglund M, Elinder CG, Nordberg G, Vahter M (1998) Health effects of cadmium exposure—a review of the literature and a risk estimate. Scand J Work Environ Health 24(Suppl 1):1–51

    PubMed  Google Scholar 

  • Jensen A, Bro-Rasmussen F (1992) Environmental cadmium in Europe. Rev Environ Contam Toxicol 125:101–181

    PubMed  CAS  Google Scholar 

  • Jin T, Wu X, Tang Y, Nordberg M, Bernard A, Ye T, Kong Q, Lundstrom NG, Nordberg GF (2004) Environmental epidemiological study and estimation of benchmark dose for renal dysfunction in a cadmium-polluted area in China. Biometals 17:525–530

    Article  PubMed  CAS  Google Scholar 

  • Jones MM, Basinger MA, Topping RJ, Gale GR, Jones SG, Holscher MA (1988) Meso-2,3-dimercaptosuccinic acid and sodium N-benzyl-N-dithiocarboxy-d-glucamine as antagonists for cadmium intoxication. Arch Toxicol 62:29–36

    Article  PubMed  CAS  Google Scholar 

  • Kazantzis G (2004) Cadmium, osteoporosis and calcium metabolism. Biometals 17:493–498

    Article  PubMed  CAS  Google Scholar 

  • Kinne-Saffran E, Hulseweh M, Pfaff C, Kinne RK (1993) Inhibition of Na, K-ATPase by cadmium: different mechanisms in different species. Toxicol Appl Pharmacol 121:22–29

    Article  PubMed  CAS  Google Scholar 

  • Lauwerys R, Bernard A, Buchet JP, Roels H, Bruaux P, Claeys F, Ducoffre G, De Plaen P, Staessen J, Amery A (1991) Does environmental exposure to cadmium represent a health risk? Conclusions from the Cadmibel study. Acta Clin Belg 46:219–225

    PubMed  CAS  Google Scholar 

  • Lauwerys RR, Bernard AM, Roels HA, Buchet JP (1994) Cadmium: exposure markers as predictors of nephrotoxic effects. Clin Chem 40:1391–1394

    PubMed  CAS  Google Scholar 

  • Levey AS, Coresh J, Balk E, Kausz AT, Levin A, Steffes MW, Hogg RJ, Perrone RD, Lau J, Eknoyan G (2003) National Kidney Foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Ann Intern Med 139:137–147

    PubMed  Google Scholar 

  • Liu J, Liu Y, Habeebu SM, Waalkes MP, Klaassen CD (2000) Chronic combined exposure to cadmium and arsenic exacerbates nephrotoxicity, particularly in metallothionein-I/II null mice. Toxicology 147:157–166

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Li H, Soleimani M, Girijashanker K, Reed JM, He L, Dalton TP, Nebert DW (2008) Cd2+ versus Zn2+ uptake by the ZIP8 HCO3–dependent symporter: kinetics, electrogenicity and trafficking. Biochem Biophys Res Commun 365:814–820

    Article  PubMed  CAS  Google Scholar 

  • Mahaffey KR, Fowler BA (1977) Effects of concurrent administration of lead, cadmium, and arsenic in the rat. Environ Health Perspect 19:165–171

    Article  PubMed  CAS  Google Scholar 

  • Manzar W, Raghavan MR, Aroor AR, Keshavamurthy KR (1992) Evaluation of serum beta 2-microglobulin in oral cancer. Aust Dent J 37:39–42

    Article  PubMed  CAS  Google Scholar 

  • Meyer I, Heinrich J, Lippold U (1999) Factors affecting lead and cadmium levels in house dust in industrial areas of eastern Germany. Sci Total Environ 234:25–36

    Article  PubMed  CAS  Google Scholar 

  • Moriguchi J, Inoue Y, Kamiyama S, Horiguchi M, Murata K, Sakuragi S, Fukui Y, Ohashi F, Ikeda M (2009) N-acetyl-beta-d-glucosaminidase (NAG) as the most sensitive marker of tubular dysfunction for monitoring residents in non-polluted areas. Toxicol Lett 190:1–8

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa H, Nishijo M, Morikawa Y, Miura K, Tawara K, Kuriwaki J, Kido T, Ikawa A, Kobayashi E, Nogawa K (2006) Urinary cadmium and mortality among inhabitants of a cadmium-polluted area in Japan. Environ Res 100:323–329

    Article  PubMed  CAS  Google Scholar 

  • Navas-Acien A, Tellez-Plaza M, Guallar E, Muntner P, Silbergeld E, Jaar B, Weaver V (2009) Blood cadmium and lead and chronic kidney disease in US adults: a joint analysis. Am J Epidemiol 170:1156–1164

    Article  PubMed  Google Scholar 

  • Nawrot T, Plusquin M, Hogervorst J, Roels HA, Celis H, Thijs L, Vangronsveld J, Van HE, Staessen JA (2006) Environmental exposure to cadmium and risk of cancer: a prospective population-based study. Lancet Oncol 7:119–126

    Article  PubMed  CAS  Google Scholar 

  • Nogawa K, Hagino N, Ishizaki A, Fukushima M (1975a) Itai-itai disease. Nippon Eiseigaku Zasshi 30:76

    PubMed  CAS  Google Scholar 

  • Nogawa K, Ishizaki A, Fukushima M, Shibata I, Hagino N (1975b) Studies on the women with acquired Fanconi syndrome observed in the Ichi river basin polluted by cadmium. Is this Itai-itai disease? Environ Res 10:280–307

    Article  PubMed  CAS  Google Scholar 

  • Noonan CW, Sarasua SM, Campagna D, Kathman SJ, Lybarger JA, Mueller PW (2002) Effects of exposure to low levels of environmental cadmium on renal biomarkers. Environ Health Perspect 110:151–155

    Article  PubMed  CAS  Google Scholar 

  • Nordberg GF (2009) Historical perspectives on cadmium toxicology. Toxicol Appl Pharmacol 238:192–200

    Article  PubMed  CAS  Google Scholar 

  • Obi E, Akunyili DN, Ekpo B, Orisakwe OE (2006) Heavy metal hazards of Nigerian herbal remedies. Sci Total Environ 369:35–41

    Article  PubMed  CAS  Google Scholar 

  • Okuda B, Iwamoto Y, Tachibana H, Sugita M (1997) Parkinsonism after acute cadmium poisoning. Clin Neurol Neurosurg 99:263–265

    Article  PubMed  CAS  Google Scholar 

  • Parizek J, Zahor Z (1956) Effect of cadmium salts on testicular tissue. Nature 177:1036

    PubMed  CAS  Google Scholar 

  • Park JD, Cherrington NJ, Klaassen CD (2002) Intestinal absorption of cadmium is associated with divalent metal transporter 1 in rats. Toxicol Sci 68:288–294

    Article  PubMed  CAS  Google Scholar 

  • Peterson PA, Evrin PE, Berggard I (1969) Differentiation of glomerular, tubular, and normal proteinuria: determinations of urinary excretion of beta-2-macroglobulin, albumin, and total protein. J Clin Invest 48:1189–1198

    Article  PubMed  CAS  Google Scholar 

  • Prozialeck WC, Lamar PC, Lynch SM (2003) Cadmium alters the localization of N-cadherin, E-cadherin, and beta-catenin in the proximal tubule epithelium. Toxicol Appl Pharmacol 189:180–195

    Article  PubMed  CAS  Google Scholar 

  • Rose CS, Heywood PG, Costanzo RM (1992) Olfactory impairment after chronic occupational cadmium exposure. J Occup Med 34:600–605

    PubMed  CAS  Google Scholar 

  • Schwartz GG, Il’yasova D, Ivanova A (2003) Urinary cadmium, impaired fasting glucose, and diabetes in the NHANES III. Diabetes Care 26:468–470

    Article  PubMed  CAS  Google Scholar 

  • Shaikh ZA, Vu TT, Zaman K (1999) Oxidative stress as a mechanism of chronic cadmium-induced hepatotoxicity and renal toxicity and protection by antioxidants. Toxicol Appl Pharmacol 154:256–263

    Article  PubMed  CAS  Google Scholar 

  • Sheabar FZ, Yannai S (1989) Extracorporeal complexation and haemodialysis for the treatment of cadmium poisoning. I. Effects of four chelators on the in vitro elimination of cadmium from human blood. Pharmacol Toxicol 64:257–261

    Article  PubMed  CAS  Google Scholar 

  • Spieker C, Zidek W, Zumkley H (1987) Cadmium and hypertension. Nephron 47(Suppl 1):34–36

    Article  PubMed  CAS  Google Scholar 

  • Stohs SJ, Bagchi D, Hassoun E, Bagchi M (2000) Oxidative mechanisms in the toxicity of chromium and cadmium ions. J Environ Pathol Toxicol Oncol 19:201–213

    PubMed  CAS  Google Scholar 

  • Tang W, Shaikh ZA (2001) Renal cortical mitochondrial dysfunction upon cadmium metallothionein administration to Sprague-Dawley rats. J Toxicol Environ Health A 63:221–235

    Article  PubMed  CAS  Google Scholar 

  • Thevenod F (2003) Nephrotoxicity and the proximal tubule. Insights from cadmium. Nephron Physiol 93:87–93

    Article  CAS  Google Scholar 

  • Thevenod F, Friedmann JM, Katsen AD, Hauser IA (2000) Up-regulation of multidrug resistance P-glycoprotein via nuclear factor-kappaB activation protects kidney proximal tubule cells from cadmium- and reactive oxygen species-induced apoptosis. J Biol Chem 275:1887–1896

    Article  PubMed  CAS  Google Scholar 

  • Thun MJ, Osorio AM, Schober S, Hannon WH, Lewis B, Halperin W (1989) Nephropathy in cadmium workers: assessment of risk from airborne occupational exposure to cadmium. Br J Ind Med 46:689–697

    PubMed  CAS  Google Scholar 

  • Tzirogiannis KN, Panoutsopoulos GI, Demonakou MD, Hereti RI, Alexandropoulou KN, Basayannis AC, Mykoniatis MG (2003) Time-course of cadmium-induced acute hepatotoxicity in the rat liver: the role of apoptosis. Arch Toxicol 77:694–701

    Article  PubMed  CAS  Google Scholar 

  • Uno T, Kobayashi E, Suwazono Y, Okubo Y, Miura K, Sakata K, Okayama A, Ueshima H, Nakagawa H, Nogawa K (2005) Health effects of cadmium exposure in the general environment in Japan with special reference to the lower limit of the benchmark dose as the threshold level of urinary cadmium. Scand J Work Environ Health 31:307–315

    PubMed  CAS  Google Scholar 

  • Van Assche F, Ciarletta P (1993) Environmental exposure to cadmium in Belgium: decreasing trends during the 1980s. In: Heavy metals in the environment, vol 1. CEP consultants, Pub. Edinburg, UK, pp 34–37

  • Wang Y, Fang J, Leonard SS, Rao KM (2004) Cadmium inhibits the electron transfer chain and induces reactive oxygen species. Free Radic Biol Med 36:1434–1443

    Article  PubMed  CAS  Google Scholar 

  • Wolff NA, Abouhamed M, Verroust PJ, Thevenod F (2006) Megalin-dependent internalization of cadmium-metallothionein and cytotoxicity in cultured renal proximal tubule cells. J Pharmacol Exp Ther 318:782–791

    Article  PubMed  CAS  Google Scholar 

  • Yanagiya T, Imura N, Enomoto S, Kondo Y, Himeno S (2000) Suppression of a high-affinity transport system for manganese in cadmium-resistant metallothionein-null cells. J Pharmacol Exp Ther 292:1080–1086

    PubMed  CAS  Google Scholar 

  • Yates DH, Goldman KP (1990) Acute cadmium poisoning in a foreman plater welder. Br J Ind Med 47:429–431

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr David Shirley and Dr Pedro Cutillas for their help with the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhil Johri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johri, N., Jacquillet, G. & Unwin, R. Heavy metal poisoning: the effects of cadmium on the kidney. Biometals 23, 783–792 (2010). https://doi.org/10.1007/s10534-010-9328-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-010-9328-y

Keywords

Navigation