Skip to main content
Log in

A review of non-cancer effects, especially circulatory and ocular diseases

  • Review Article
  • Published:
Radiation and Environmental Biophysics Aims and scope Submit manuscript

Abstract

There is a well-established association between high doses (>5 Gy) of ionizing radiation exposure and damage to the heart and coronary arteries, although only recently have studies with high-quality individual dosimetry been conducted that would enable quantification of this risk adjusting for concomitant chemotherapy. The association between lower dose exposures and late occurring circulatory disease has only recently begun to emerge in the Japanese atomic bomb survivors and in various occupationally exposed cohorts and is still controversial. Excess relative risks per unit dose in moderate- and low-dose epidemiological studies are somewhat variable, possibly a result of confounding and effect modification by well-known (but unobserved) risk factors. Radiation doses of 1 Gy or more are associated with increased risk of posterior subcapsular cataract. Accumulating evidence from the Japanese atomic bomb survivors, Chernobyl liquidators, US astronauts, and various other exposed groups suggests that cortical cataracts may also be associated with ionizing radiation, although there is little evidence that nuclear cataracts are radiogenic. The dose–response appears to be linear, although modest thresholds (of no more than about 0.6 Gy) cannot be ruled out. A variety of other non-malignant effects have been observed after moderate/low-dose exposure in various groups, in particular respiratory and digestive disease and central nervous system (and in particular neuro-cognitive) damage. However, because these are generally only observed in isolated groups, or because the evidence is excessively heterogeneous, these associations must be treated with caution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. The equivalent dose, in sievert (Sv), with different types of radiation absorbed dose weighted by their biological effectiveness at inducing stochastic effects, is numerically very close to the (unweighted) absorbed dose, in gray (Gy), for all studies considered here.

References

  • Adams MJ, Hardenbergh PH, Constine LS, Lipshultz SE (2003) Radiation-associated cardiovascular disease. Crit Rev Oncol Hematol 45:55–75

    Article  Google Scholar 

  • Adams MJ, Grant EJ, Kodama K, Shimizu Y, Kasagi F, Suyama A, Sakata R, Akahoshi M (2012) Radiation dose associated with renal failure mortality: a potential pathway to partially explain increased cardiovascular disease mortality observed after whole-body irradiation. Radiat Res 177:220–228

    Article  Google Scholar 

  • Advisory Group on Ionising Radiation (2010) Circulatory disease risk. Report of the independent Advisory Group on Ionising Radiation. Health Protection Agency, Holborn Gate, 330 High Holborn, London, pp 1–116

  • Ainsbury EA, Bouffler SD, Dörr W, Graw J, Muirhead CR, Edwards AA, Cooper J (2009) Radiation cataractogenesis: a review of recent studies. Radiat Res 172:1–9

    Article  Google Scholar 

  • Azizova TV, Muirhead CR, Druzhinina MB, Grigoryeva ES, Vlasenko EV, Sumina MV, O’Hagan JA, Zhang W, Haylock RGE, Hunter N (2010a) Cardiovascular diseases in the cohort of workers first employed at Mayak PA in 1948–1958. Radiat Res 174:155–168

    Article  Google Scholar 

  • Azizova TV, Muirhead CR, Druzhinina MB, Grigoryeva ES, Vlasenko EV, Sumina MV, O’Hagan JA, Zhang W, Haylock RGE, Hunter N (2010b) Cerebrovascular diseases in the cohort of workers first employed at Mayak PA in 1948–1958. Radiat Res 174:851–864

    Article  Google Scholar 

  • Burnham KP, Anderson DR (1998) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New York, pp 1–496

    Book  Google Scholar 

  • Burns DM (2003) Epidemiology of smoking-induced cardiovascular disease. Prog Cardiovasc Dis 46:11–29

    Article  Google Scholar 

  • Chen W-L, Hwang J-S, Hu T-H, Chen M-S, Chang WP (2001) Lenticular opacities in populations exposed to chronic low-dose-rate gamma radiation from radiocontaminated buildings in Taiwan. Radiat Res 156:71–77

    Article  Google Scholar 

  • Chodick G, Bekiroglu N, Hauptmann M, Alexander BH, Freedman DM, Doody MM, Cheung LC, Simon SL, Weinstock RM, Bouville A, Sigurdson AJ (2008) Risk of cataract after exposure to low doses of ionizing radiation: a 20-year prospective cohort study among US radiologic technologists. Am J Epidemiol 168:620–631

    Article  Google Scholar 

  • Chylack LT Jr, Peterson LE, Feiveson AH, Wear ML, Manuel FK, Tung WH, Hardy DS, Marak LJ, Cucinotta FA (2009) NASA study of cataract in astronauts (NASCA). Report 1: cross-sectional study of the relationship of exposure to space radiation and risk of lens opacity. Radiat Res 172:10–20

    Article  Google Scholar 

  • Chylack LT Jr, Feiveson AH, Peterson LE, Tung WH, Wear ML, Marak LJ, Hardy DS, Chappell LJ, Cucinotta FA (2012) NASCA report 2: longitudinal study of relationship of exposure to space radiation and risk of lens opacity. Radiat Res 178:25–32

    Article  Google Scholar 

  • Ciraj-Bjelac O, Rehani MM, Sim KH, Liew HB, Vano E, Kleiman NJ (2010) Risk for radiation-induced cataract for staff in interventional cardiology: is there reason for concern? Catheter Cardiovasc Interv 76:826–834

    Google Scholar 

  • Claeskens G, Hjort NL (2008) Model selection and model averaging. In: Cambridge series in statistical and probabilistic mathematics. Cambridge University Press, Cambridge, pp 1–312

  • Cogan DG, Donaldson DD, Reese AB (1952) Clinical and pathological characteristics of radiation cataract. AMA Arch Ophthalmol 47:55–70

    Article  Google Scholar 

  • Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation. National Research Council (2006) Health risks from exposure to low levels of ionizing radiation: BEIR VII—phase 2. National Academy Press, Washington, DC, pp 1–406

    Google Scholar 

  • Danesh J, Whincup P, Lewington S, Walker M, Lennon L, Thomson A, Wong Y-K, Zhou X, Ward M (2002) Chlamydia pneumoniae IgA titres and coronary heart disease—prospective study and meta-analysis. Eur Heart J 23:371–375

    Article  Google Scholar 

  • Darby SC, Ewertz M, McGale P, Bennet AM, Blom-Goldman U, Brønnum D, Correa C, Cutter D, Gagliardi G, Gigante B, Jensen M-B, Nisbet A, Peto R, Rahimi K, Taylor C, Hall P (2013) Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med 368:987–998

    Article  Google Scholar 

  • Day R, Gorin MB, Eller AW (1995) Prevalence of lens changes in Ukrainian children residing around Chernobyl. Health Phys 68:632–642

    Google Scholar 

  • Delcourt C, Dupuy A-M, Carriere I, Lacroux A, Cristol J-P (2005) Albumin and transthyretin as risk factors for cataract: the POLA study. Arch Ophthalmol 123:225–232

    Article  Google Scholar 

  • Devi A, Raina PL, Singh A (1965) Abnormal protein and nucleic acid metabolism as a cause of cataract formation induced by nutritional deficiency in rabbits. Br J Ophthalmol 49:271–275

    Article  Google Scholar 

  • Edwards AA, Lloyd DC (1998) Risks from ionising radiation: deterministic effects. J Radiol Prot 18:175–183

    Article  Google Scholar 

  • Folley JH, Borges W, Yamawaki T (1952) Incidence of leukemia in survivors of the atomic bomb in Hiroshima and Nagasaki, Japan. Am J Med 13:311–321

    Article  Google Scholar 

  • Gluckman PD, Hanson MA, Beedle AS (2007) Early life events and their consequences for later disease: a life history and evolutionary perspective. Am J Hum Biol 19:1–19

    Article  Google Scholar 

  • Grantham-McGregor S (1995) A review of studies of the effect of severe malnutrition on mental development. J Nutr 125:2233S–2238S

    Google Scholar 

  • Grosche B, Lackland DT, Land CE, Simon SL, Apsalikov KN, Pivina LM, Bauer S, Gusev BI (2011) Mortality from cardiovascular diseases in the Semipalatinsk historical cohort, 1960–1999, and its relationship to radiation exposure. Radiat Res 176:660–669

    Article  Google Scholar 

  • Hall P, Granath F, Lundell M, Olsson K, Holm L-E (1999) Lenticular opacities in individuals exposed to ionizing radiation in infancy. Radiat Res 152:190–195

    Article  Google Scholar 

  • Hall P, Adami H-O, Trichopoulos D, Pedersen NL, Lagiou P, Ekbom A, Ingvar M, Lundell M, Granath F (2004) Effect of low doses of ionising radiation in infancy on cognitive function in adulthood: Swedish population based cohort study. BMJ 328:19

    Article  Google Scholar 

  • Hammer GP, Scheidemann-Wesp U, Samkange-Zeeb F, Wicke H, Neriishi K, Blettner M (2013) Occupational exposure to low doses of ionizing radiation and cataract development: a systematic literature review and perspectives on future studies. Radiat Environ Biophys 52:303–319

    Google Scholar 

  • Harding JJ, Crabbe MJC (1984) The eye (3rd edition). In: Davson H (ed) The lens: development, proteins, metabolism and cataract. Academic Press, Orlando, pp 207–492

    Google Scholar 

  • Hourihan F, Mitchell P, Cumming RG (1999) Possible associations between computed tomography scan and cataract: the Blue Mountains Eye Study. Am J Public Health 89:1864–1866

    Google Scholar 

  • Hsieh WA, Lin I-F, Chang WP, Chen W-L, Hsu YH, Chen M-S (2010) Lens opacities in young individuals long after exposure to protracted low-dose-rate γ radiation in 60Co-contaminated buildings in Taiwan. Radiat Res 173:197–204

    Article  Google Scholar 

  • Imamura Y, Nakane Y, Ohta Y, Kondo H (1999) Lifetime prevalence of schizophrenia among individuals prenatally exposed to atomic bomb radiation in Nagasaki City. Acta Psychiatr Scand 100:344–349

    Article  Google Scholar 

  • International Commission on Radiological Protection (2012) ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs—threshold doses for tissue reactions in a radiation protection context. ICRP publication 118. Ann ICRP 41(1–2):1–322

    Google Scholar 

  • Ivanov VK, Maksioutov MA, Chekin SY, Petrov AV, Biryukov AP, Kruglova ZG, Matyash VA, Tsyb AF, Manton KG, Kravchenko JS (2006) The risk of radiation-induced cerebrovascular disease in Chernobyl emergency workers. Health Phys 90:199–207

    Article  Google Scholar 

  • Jones JA, McCarten M, Manuel K, Djojonegoro B, Murray J, Feiversen A, Wear M (2007) Cataract formation mechanisms and risk in aviation and space crews. Aviat Space Environ Med 78:A56–A66

    Google Scholar 

  • Kleiman NJ, Worgul BV (1994) Duane’s foundations of clinical ophthalmology, volume 1. In: Tasman W, Jaeger EA (eds) Lens. JP Lippincott and Co., Philadelphia, PA, pp 1–39

    Google Scholar 

  • Klein BEK, Klein R, Linton KLP, Franke T (1993) Diagnostic X-ray exposure and lens opacities: the Beaver Dam eye study. Am J Public Health 83:588–590

    Article  Google Scholar 

  • Klein BEK, Klein R, Moss SE (2000) Exposure to diagnostic x-rays and incident age-related eye disease. Ophthalmic Epidemiol 7:61–65

    Google Scholar 

  • Krestinina LY, Epifanova S, Silkin S, Mikryukova L, Degteva M, Shagina N, Akleyev A (2013) Chronic low-dose exposure in the Techa River cohort: risk of mortality from circulatory diseases. Radiat Environ Biophys 52:47–57

    Article  Google Scholar 

  • Kreuzer M, Kreisheimer M, Kandel M, Schnelzer M, Tschense A, Grosche B (2006) Mortality from cardiovascular diseases in the German uranium miners cohort study, 1946–1998. Radiat Environ Biophys 45:159–166

    Article  Google Scholar 

  • Kreuzer M, Dufey F, Sogl M, Schnelzer M, Walsh L (2013) External gamma radiation and mortality from cardiovascular diseases in the German WISMUT uranium miners cohort study, 1946–2008. Radiat Environ Biophys 52:37–46

    Article  Google Scholar 

  • Kuck J (1970) Biochemistry of the eye. In: Graymore CN (ed) Metabolism of the lens. Academic Press, London, pp 261–318

    Google Scholar 

  • Kusunoki Y, Kyoizumi S, Hirai Y, Suzuki T, Nakashima E, Kodama K, Seyama T (1998) Flow cytometry measurements of subsets of T, B and NK cells in peripheral blood lymphocytes of atomic bomb survivors. Radiat Res 150:227–236

    Article  Google Scholar 

  • Kuszak JR, Brown HG (1994) Principles and practice of ophthalmology: basic sciences. In: Albert DM, Jackobiec FA (eds) Embryology and anatomy of the lens. WB Saunders, Philadelphia, pp 82–96

    Google Scholar 

  • Lane RS, Frost SE, Howe GR, Zablotska LB (2010) Mortality (1950–1999) and cancer incidence (1969–1999) in the cohort of Eldorado uranium workers. Radiat Res 174:773–785

    Article  Google Scholar 

  • Laurent O, Metz-Flamant C, Rogel A, Hubert D, Riedel A, Garcier Y, Laurier D (2010) Relationship between occupational exposure to ionizing radiation and mortality at the French electricity company, period 1961–2003. Int Arch Occup Environ Health 83:935–944

    Article  Google Scholar 

  • Little MP (2002) Absence of evidence for differences in the dose-response for cancer and non-cancer endpoints by acute injury status in the Japanese atomic-bomb survivors. Int J Radiat Biol 78:1001–1010

    Article  Google Scholar 

  • Little MP (2004) Threshold and other departures from linear-quadratic curvature in the non-cancer mortality dose-response curve in the Japanese atomic bomb survivors. Radiat Environ Biophys 43:67–75

    Article  Google Scholar 

  • Little MP, Charles MW (1990) Bomb survivor selection and consequences for estimates of population cancer risks. Health Phys 59:765–775

    Article  Google Scholar 

  • Little MP, Tawn EJ, Tzoulaki I, Wakeford R, Hildebrandt G, Paris F, Tapio S, Elliott P (2008) A systematic review of epidemiological associations between low and moderate doses of ionizing radiation and late cardiovascular effects, and their possible mechanisms. Radiat Res 169:99–109

    Article  Google Scholar 

  • Little MP, Gola A, Tzoulaki I (2009) A model of cardiovascular disease giving a plausible mechanism for the effect of fractionated low-dose ionizing radiation exposure. PLoS Comput Biol 5:e1000539

    Article  MathSciNet  Google Scholar 

  • Little MP, Tawn EJ, Tzoulaki I, Wakeford R, Hildebrandt G, Paris F, Tapio S, Elliott P (2010) Review and meta-analysis of epidemiological associations between low/moderate doses of ionizing radiation and circulatory disease risks, and their possible mechanisms. Radiat Environ Biophys 49:139–153

    Article  Google Scholar 

  • Little MP, Azizova TV, Bazyka D, Bouffler SD, Cardis E, Chekin S, Chumak VV, Cucinotta FA, de Vathaire F, Hall P, Harrison JD, Hildebrandt G, Ivanov V, Kashcheev VV, Klymenko SV, Kreuzer M, Laurent O, Ozasa K, Schneider T, Tapio S, Taylor AM, Tzoulaki I, Vandoolaeghe WL, Wakeford R, Zablotska LB, Zhang W, Lipshultz SE (2012a) Systematic review and meta-analysis of circulatory disease from exposure to low-level ionizing radiation and estimates of potential population mortality risks. Environ Health Perspect 120:1503–1511

    Article  Google Scholar 

  • Little MP, Kleinerman RA, Stovall M, Smith SA, Mabuchi K (2012b) Analysis of dose response for circulatory disease after radiotherapy for benign disease. Int J Radiat Oncol Biol Phys 84:1101–1109

    Article  Google Scholar 

  • Little MP, Azizova TV, Bazyka D, Bouffler SD, Cardis E, Chekin S, Chumak VV, Cucinotta FA, de Vathaire F, Hall P, Harrison JD, Hildebrandt G, Ivanov V, Kashcheev VV, Klymenko SV, Laurent O, Ozasa K, Tapio S, Taylor AM, Tzoulaki I, Vandoolaeghe WL, Wakeford R, Zablotska L, Zhang W, Lipshultz SE (2013a) Comment on “Dose-responses from multi-model inference for the non-cancer disease mortality of atomic bomb survivors” (Radiat. Environ. Biophys (2012) 51:165–178) by Schöllnberger et al. Radiat Environ Biophys 52:157–159

    Google Scholar 

  • Little MP, Zablotska LB, Lipshultz SE (2013b) Ischemic heart disease after breast cancer radiotherapy. N Engl J Med 368:2523–2524

    Article  Google Scholar 

  • McAvoy JW (1978) Cell division, cell elongation and distribution of α-, β- and γ-crystallins in the rat lens. J Embryol Exp Morphol 44:149–165

    Google Scholar 

  • McGale P, Darby SC (2005) Low doses of ionizing radiation and circulatory diseases: a systematic review of the published epidemiological evidence. Radiat Res 163:247–257, 711

    Google Scholar 

  • McGale P, Darby SC (2008) Commentary: a dose-response relationship for radiation-induced heart disease–current issues and future prospects. Int J Epidemiol 37:518–523

    Article  Google Scholar 

  • McGeoghegan D, Binks K, Gillies M, Jones S, Whaley S (2008) The non-cancer mortality experience of male workers at British Nuclear Fuels plc, 1946–2005. Int J Epidemiol 37:506–518

    Article  Google Scholar 

  • Minamoto A, Taniguchi H, Yoshitani N, Mukai S, Yokoyama T, Kumagami T, Tsuda Y, Mishima HK, Amemiya T, Nakashima E, Neriishi K, Hida A, Fujiwara S, Suzuki G, Akahoshi M (2004) Cataract in atomic bomb survivors. Int J Radiat Biol 80:339–345

    Article  Google Scholar 

  • Mitchel RE, Hasu M, Bugden M, Wyatt H, Little MP, Gola A, Hildebrandt G, Priest ND, Whitman SC (2011) Low-dose radiation exposure and atherosclerosis in ApoE −/− mice. Radiat Res 175:665–676

    Article  Google Scholar 

  • Mrena S, Kivelä T, Kurttio P, Auvinen A (2011) Lens opacities among physicians occupationally exposed to ionizing radiation—a pilot study in Finland. Scand J Work Environ Health 37:237–243

    Article  Google Scholar 

  • Muirhead CR, O’Hagan JA, Haylock RGE, Phillipson MA, Willcock T, Berridge GLC, Zhang W (2009) Mortality and cancer incidence following occupational radiation exposure: third analysis of the National Registry for Radiation Workers. Br J Cancer 100:206–212

    Article  Google Scholar 

  • Mulrooney DA, Yeazel MW, Kawashima T, Mertens AC, Mitby P, Stovall M, Donaldson SS, Green DM, Sklar CA, Robison LL, Leisenring WM (2009) Cardiac outcomes in a cohort of adult survivors of childhood and adolescent cancer: retrospective analysis of the Childhood Cancer Survivor Study cohort. BMJ 339:b4606

    Article  Google Scholar 

  • Nakashima E, Carter RL, Neriishi K, Tanaka S, Funamoto S (1995) Height reduction among prenatally exposed atomic-bomb survivors: a longitudinal study of growth. Health Phys 68:766–772

    Article  Google Scholar 

  • Nakashima E, Neriishi K, Minamoto A (2006) A reanalysis of atomic-bomb cataract data, 2000–2002: a threshold analysis. Health Phys 90:154–160

    Article  Google Scholar 

  • Neriishi K, Nakashima E, Akahoshi M, Hida A, Grant EJ, Masunari N, Funamoto S, Minamoto A, Fujiwara S, Shore RE (2012) Radiation dose and cataract surgery incidence in atomic bomb survivors, 1986–2005. Radiology 265:167–174

    Article  Google Scholar 

  • Otake M, Schull WJ (1993) Radiation-related small head sizes among prenatally exposed A-bomb survivors. Int J Radiat Biol 63:255–270

    Article  Google Scholar 

  • Otake M, Schull WJ (1998) Radiation-related brain damage and growth retardation among the prenatally exposed atomic bomb survivors. Int J Radiat Biol 74:159–171

    Article  Google Scholar 

  • Ozasa K, Shimizu Y, Suyama A, Kasagi F, Soda M, Grant EJ, Sakata R, Sugiyama H, Kodama K (2012) Studies of the mortality of atomic bomb survivors, report 14, 1950–2003: an overview of cancer and noncancer diseases. Radiat Res 177:229–243

    Article  Google Scholar 

  • Preston DL, Shimizu Y, Pierce DA, Suyama A, Mabuchi K (2003) Studies of mortality of atomic bomb survivors. Report 13: solid cancer and noncancer disease mortality: 1950–1997. Radiat Res 160:381–407

    Article  Google Scholar 

  • Preston DL, Ron E, Tokuoka S, Funamoto S, Nishi N, Soda M, Mabuchi K, Kodama K (2007) Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat Res 168:1–64

    Article  Google Scholar 

  • Rafnsson V, Olafsdottir E, Hrafnkelsson J, Sasaki H, Arnarsson A, Jonasson F (2005) Cosmic radiation increases the risk of nuclear cataract in airline pilots: a population-based case-control study. Arch Ophthalmol 123:1102–1105

    Article  Google Scholar 

  • Rastegar N, Eckart P, Mertz M (2002) Radiation-induced cataract in astronauts and cosmonauts. Graefes Arch Clin Exp Ophthalmol 240:543–547

    Google Scholar 

  • Richardson DB, Wing S (1999) Radiation and mortality of workers at Oak Ridge National Laboratory: positive associations for doses received at older ages. Environ Health Perspect 107:649–656

    Article  Google Scholar 

  • Ridker PM (1998) Inflammation, infection, and cardiovascular risk: how good is the clinical evidence? Circulation 97:1671–1674

    Article  Google Scholar 

  • Ross L, Johansen C, Dalton SO, Mellemkjær L, Thomassen LH, Mortensen PB, Olsen JH (2003) Psychiatric hospitalizations among survivors of cancer in childhood or adolescence. N Engl J Med 349:650–657

    Article  Google Scholar 

  • Sadetzki S, Chetrit A, Mandelzweig L, Nahon D, Freedman L, Susser E, Gross R (2011) Childhood exposure to ionizing radiation to the head and risk of schizophrenia. Radiat Res 176:670–677

    Article  Google Scholar 

  • Schervish MJ (1995) Theory of statistics. Springer, New York, pp 1–724

    MATH  Google Scholar 

  • Schöllnberger H, Kaiser JC, Jacob P, Walsh L (2012) Dose-responses from multi-model inference for the non-cancer disease mortality of atomic bomb survivors. Radiat Environ Biophys 51:165–178

    Article  Google Scholar 

  • Schöllnberger H, Kaiser JC, Walsh L, Jacob P (2013) Reply to Little et al.: dose-responses from multi-model inference for the non-cancer disease mortality of atomic bomb survivors. Radiat Environ Biophys 52:161–163

    Article  Google Scholar 

  • Schull WJ, Otake M (1999) Cognitive function and prenatal exposure to ionizing radiation. Teratology 59:222–226

    Article  Google Scholar 

  • Schultz-Hector S, Trott K-R (2007) Radiation-induced cardiovascular diseases: is the epidemiologic evidence compatible with the radiobiologic data? Int J Radiat Oncol Biol Phys 67:10–18

    Article  Google Scholar 

  • Shimizu Y, Kodama K, Nishi N, Kasagi F, Suyama A, Soda M, Grant EJ, Sugiyama H, Sakata R, Moriwaki H, Hayashi M, Konda M, Shore RE (2010) Radiation exposure and circulatory disease risk: Hiroshima and Nagasaki atomic bomb survivor data, 1950–2003. BMJ 340:b5349

    Article  Google Scholar 

  • Skilton MR, Gosby AK, Wu BJ, Ho LML, Stocker R, Caterson ID, Celermajer DS (2006) Maternal undernutrition reduces aortic wall thickness and elastin content in offspring rats without altering endothelial function. Clin Sci 111:281–287

    Article  Google Scholar 

  • Stewart AM, Kneale GW (1984) Non-cancer effects of exposure to A-bomb radiation. J Epidemiol Community Health 38:108–112

    Article  Google Scholar 

  • Stewart AM, Kneale GW (2000) A-bomb survivors: factors that may lead to a re-assessment of the radiation hazard. Int J Epidemiol 29:708–714

    Article  Google Scholar 

  • Syndikus I, Tait D, Ashley S, Jannoun L (1994) Long-term follow-up of young children with brain tumors after irradiation. Int J Radiat Oncol Biol Phys 30:781–787

    Article  Google Scholar 

  • Talbott EO, Youk AO, McHugh-Pemu KP, Zborowski JV (2003) Long-term follow-up of the residents of the Three Mile Island accident area: 1979–1998. Environ Health Perspect 111:341–348

    Article  Google Scholar 

  • Tatsukawa Y, Nakashima E, Yamada M, Funamoto S, Hida A, Akahoshi M, Sakata R, Ross NP, Kasagi F, Fujiwara S, Shore RE (2008) Cardiovascular disease risk among atomic bomb survivors exposed in utero, 1978–2003. Radiat Res 170:269–274

    Article  Google Scholar 

  • Travis LB, Hauptmann M, Gaul LK, Storm HH, Goldman MB, Nyberg U, Berger E, Janower ML, Hall P, Monson RR, Holm L-E, Land CE, Schottenfeld D, Boice JD Jr, Andersson M (2003) Site-specific cancer incidence and mortality after cerebral angiography with radioactive Thorotrast. Radiat Res 160:691–706

    Article  Google Scholar 

  • Tüchsen F, Hannerz H, Burr H (2006) A 12 year prospective study of circulatory disease among Danish shift workers. Occup Environ Med 63:451–455

    Article  Google Scholar 

  • Tukenova M, Guibout C, Oberlin O, Doyon F, Mousannif A, Haddy N, Guérin S, Pacquement H, Aouba A, Hawkins M, Winter D, Bourhis J, Lefkopoulos D, Diallo I, de Vathaire F (2010) Role of cancer treatment in long-term overall and cardiovascular mortality after childhood cancer. J Clin Oncol 28:1308–1315

    Article  Google Scholar 

  • United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) (2008a) UNSCEAR 2006 report. Annex A. Epidemiological Studies of Radiation and Cancer. United Nations, New York, pp 13–322

  • United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) (2008b) UNSCEAR 2006 report. Annex B. Epidemiological Evaluation of Cardiovascular Disease and other Non-Cancer Diseases following Radiation Exposure. United Nations, New York, pp 325–383

  • van Heyningen R (1975) What happens to the human lens in cataract. Sci Am 233:70–81

    Article  Google Scholar 

  • von Sallmann L (1957) The lens epithelium in the pathogenesis of cataract. Trans Am Acad Ophthalmol Otolaryngol 61:7–19

    Google Scholar 

  • von Sallmann L, Grimes P, McElvain N (1962) Aspects of mitotic activity in relation to cell proliferation in the lens epithelium. Exp Eye Res 1:449–456

    Article  Google Scholar 

  • Vrijheid M, Cardis E, Ashmore P, Auvinen A, Bae J-M, Engels H, Gilbert E, Gulis G, Habib RR, Howe G, Kurtinaitis J, Malker H, Muirhead CR, Richardson DB, Rodriguez-Artalejo F, Rogel A, Schubauer-Berigan M, Tardy H, Telle-Lamberton M, Usel M, Veress K (2007) Mortality from diseases other than cancer following low doses of ionizing radiation: results from the 15-Country Study of nuclear industry workers. Int J Epidemiol 36:1126–1135

    Article  Google Scholar 

  • Wang C, Parmigiani G, Dominici F (2012) Bayesian effect estimation accounting for adjustment uncertainty. Biometrics 68:661–671

    Article  MATH  Google Scholar 

  • Whincup P, Danesh J, Walker M, Lennon L, Thomson A, Appleby P, Hawkey C, Atherton J (2000) Prospective study of potentially virulent strains of Helicobacter pylori and coronary heart disease in middle-aged men. Circulation 101:1647–1652

    Article  Google Scholar 

  • Wilde G, Sjöstrand J (1997) A clinical study of radiation cataract formation in adult life following γ irradiation of the lens in early childhood. Br J Ophthalmol 81:261–266

    Article  Google Scholar 

  • Wilson PW, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB (1998) Prediction of coronary heart disease using risk factor categories. Circulation 97:1837–1847

    Article  Google Scholar 

  • Worgul BV, Merriam GR Jr, Medvedovsky C (1989) Cortical cataract development—an expression of primary damage to the lens epithelium. Lens Eye Toxic Res 6:559–571

    Google Scholar 

  • Worgul BV, Kundiyev YI, Sergiyenko NM, Chumak VV, Vitte PM, Medvedovsky C, Bakhanova EV, Junk AK, Kyrychenko OY, Musijachenko NV, Shylo SA, Vitte OP, Xu S, Xue X, Shore RE (2007) Cataracts among Chernobyl clean-up workers: implications regarding permissible eye exposures. Radiat Res 167:233–243

    Article  Google Scholar 

  • Yamada M, Wong FL, Fujiwara S, Akahoshi M, Suzuki G (2004) Noncancer disease incidence in atomic bomb survivors, 1958–1998. Radiat Res 161:622–632

    Article  Google Scholar 

  • Yamada M, Naito K, Kasagi F, Masunari N, Suzuki G (2005) Prevalence of atherosclerosis in relation to atomic bomb radiation exposure: an RERF Adult Health Study. Int J Radiat Biol 81:821–826

    Article  Google Scholar 

  • Zoric L, Miric D, Novakovic T, Pavlovic A, Videnovic G, Trajkovic G (2008) Age-related cataract and serum albumin concentration. Curr Eye Res 33:587–590

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Intramural Research Program of the National Institutes of Health, the National Cancer Institute, Division of Cancer Epidemiology and Genetics. The author is grateful for the detailed and helpful comments of Dr Alice Sigurdson and the two referees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark P. Little.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Little, M.P. A review of non-cancer effects, especially circulatory and ocular diseases. Radiat Environ Biophys 52, 435–449 (2013). https://doi.org/10.1007/s00411-013-0484-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00411-013-0484-7

Keywords

Navigation