Skip to main content
Log in

A miniaturized active sampler for the assessment of personal exposure to nitrogen dioxide

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A personalized, miniaturized air sampling system was evaluated to estimate the daily exposure of pediatric asthmatics to nitrogen dioxide (NO2). The lightweight device (170 g) uses a sampling pump connected to a solid sorbent tube containing triethanolamine (TEA)-impregnated molecular sieve. The pump is powered by a 9 V battery and samples air over a 24 h period at a collection rate of 0.100 L/min. After exposure, the solid sorbent is removed from the tubes for spectrophotometric analysis (Griess Assay). The lower detection limit of the overall method for NO2 is 11 μg/m3. The linearity, precision and accuracy of the sampler was evaluated. Different NO2 concentrations generated in the laboratory (range: 50 to 340 μg/m3) were simultaneously measured by the TEA tube samplers and colocated continuous chemiluminescent NOx analyzers (reference method). The coefficient of determination for the laboratory test derived from ordinary linear regression (OLR) was r 2=0.99 (y OLR=0.94x−4.58) and the precision 3.6%. Further, ambient NO2 concentrations in the field (range: 10–120 μg/m3) were verified with continuous chemiluminescent monitors next to the active samplers. Reweighted least squares analysis (RLS) based on the least median squares procedure (LMS) resulted in a correlation of r 2=0.68 for a field comparison in Riverside, CA (y RLS=1.01x−0.94) and r 2=0.92 in Los Angeles, CA (y RLS=1.31x−7.12). The precision of the TEA tube devices was 7.4% (at 20–60 μg/m3 NO2) under outdoor conditions. Data show that the performance of this small active sampling system was satisfactory for measuring environmental concentrations of NO2 under laboratory and field conditions. It is useful for personal monitoring of NO2 in environmental epidemiology studies where daily measurements are desired.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bascom R, Bromberg PA, Costa DA, Devlin R, Dockery DW, Frampton MW, Lambert W, Samet JM, Speizer FE, Utell M (1996) Am J Respir Crit Care Med 153:477–498

    PubMed  Google Scholar 

  2. Tunnicliffe WS, Burge PS, Ayres JG (1994) Lancet 344:1733–1736

    Article  PubMed  CAS  Google Scholar 

  3. Strand V, Rak S, Svartengren M, Bylin G (1997) Am J Respir Crit Care Med 155:881–887

    PubMed  CAS  Google Scholar 

  4. Strand V, Svartengren M, Rak S, Barck C, Bylin G (1998) Eur Respir J 12:6–12

    Article  CAS  Google Scholar 

  5. Jenkins HS, Devalia JL, Mister RL, Bevan AM, Rusznak C, Davies RJ (1999) Am J Respir Crit Care Med 160:33–39

    PubMed  CAS  Google Scholar 

  6. Kleinman MT, Bailey RM, Linn WS, Anderson KR, Whynot JD, Shamoo DA, Hackney JD (1983) J Toxicol Environ Health 12 (4–6):815–826

    Article  CAS  Google Scholar 

  7. Blomberg A, Krishna MT, Helleday R, Söderberg M, Ledin MC, Kelly FJ, Frew AJ, Holgate ST, Sandström T (1999) Am J Respir Crit Care Med 159:536–543

    PubMed  CAS  Google Scholar 

  8. Chauhan AJ, Inskip HM, Linaker CH, Smith S, Schreiber J, Johnston SL, Holgate ST (2003) Lancet 361:1939–1944

    Article  PubMed  CAS  Google Scholar 

  9. Quakenboss JJ, Krzyzanowski M, Lebowitz MD (1991) J Expo Anal Environ Epidemiol 1:83–107

    Google Scholar 

  10. Shima M, Adachi M (2000) Int J Epidemiol 29:862–870

    Article  PubMed  CAS  Google Scholar 

  11. Peters JM, Avol E, Navidi W, London SJ, Gauderman WJ, Lurmann F, Linn WS, Margolis H, Rappaport E, Gong H, Thomas DC (1999) Am J Respir Crit Care Med 159:760–767

    PubMed  CAS  Google Scholar 

  12. Rossi OV, Kinnula VL, Tienari J, Huhti E (1993) Thorax 48:244–248

    PubMed  CAS  Google Scholar 

  13. Jamason PF, Kalkstein LS, Gergen PJ (1997) Am J Respir Crit Care Med 156:1781–1788

    PubMed  CAS  Google Scholar 

  14. Sunyer J, Spix C, Quénel P, Ponce-de-León A, Pönka A, Barumandzadeh T, Touloumi G, Bacharova L, Wojtyniak B, Vonk J, Bisanti L, Schwartz J, Katsouyanni K (1997) Thorax 52:760–765

    PubMed  CAS  Google Scholar 

  15. Morgan G, Corbett S, Wlodarczyk J (1998) Am J Public Health 88:1761–1766

    Article  PubMed  CAS  Google Scholar 

  16. Anderson HR, Ponce de Leon A, Bland JM, Bower JS, Emberlin J, Strachan DP (1998) Thorax 53:842–848

    PubMed  CAS  Google Scholar 

  17. Garty BZ, Kosman E, Ganor E, Berger V, Garty L, Wietzen T, Waisman Y, Mimouni M, Waisel Y (1998) Ann Allergy Asthma Immun 81:563–570

    Google Scholar 

  18. Burnett RT, Smith-Doiron M, Stieb D, Cakmak S, Brook JR (1999) Arch Environ Health 54:130–139

    Article  CAS  Google Scholar 

  19. Lipsett M, Hurley S, Ostro B (1997) Environ Health Perspect 105:216–222

    Article  CAS  Google Scholar 

  20. Hajat S, Haines A, Goubet SA, Atkinson RW, Anderson HR (1999) Thorax 54:597–605

    PubMed  CAS  Google Scholar 

  21. Roorda-Knape MC, Janssen NEH, De Hartog JJ, Van Vliet PHN, Harssema H, Brunekreef B (1998) Atmos Environ 32:1921–1930

    Article  CAS  Google Scholar 

  22. Palmes ED, Gunnison AF, DiMattio J, Tomczyk C (1976) Am Ind Hyg Assoc J 37(10):570–577

    PubMed  CAS  Google Scholar 

  23. Brown RH (1993) Pure Appl Chem 65(8):1859–1874

    Article  CAS  Google Scholar 

  24. Kirby C, Fox M, Waterhouse J, Drye T (2001) J Environ Monit 3:150–158

    Article  PubMed  CAS  Google Scholar 

  25. Geyh AS, Roberts PT, Lurmann FW, Schoell BM, Avol EL (1999) J Expo Anal Environ Epidemiol 9(2):143–149

    Article  CAS  Google Scholar 

  26. Chakrabarti B, Fine PM, Delfino R, Sioutas C (2004) Atmos Environ 38(20):3329–3340

    Article  CAS  Google Scholar 

  27. NIOSH (1994) NIOSH manual of analytical methods (Method 6014), 4th edn. Government Printing Office, Washington, DC

    Google Scholar 

  28. Stöckl D, Dewitte K, Thienpont LM (1998) Clin Chem 44(11):2340–2346

    PubMed  Google Scholar 

  29. Rousseeuw PJ, Leroy AM (1987) Robust regression and outlier detection. Wiley, New York

    Google Scholar 

  30. Neter J, Kutner MH, Nachtsheim CJ, Wasserman M (1996) Applied linear statistical models, 4th edn. McGraw-Hill, Boston, MA

    Google Scholar 

  31. Kennedy ER, Fischbach TJ, Song R, Eller PM, Shulman SA (1995) Guidelines for air sampling and analytical method development and evaluation (DHHS/NIOSH Pub. 95–117). Government Printing Office, Washington, DC

    Google Scholar 

  32. Blacker JH (1973) Am Ind Hyg Assoc J 34(9):390–395

    PubMed  CAS  Google Scholar 

  33. OSHA (1991) Nitric oxide backup report (ID–190) by JC Ku. UT, Salt Lake City

    Google Scholar 

  34. Heal MR, O'Donoghue MA, Cape JN (1999) Atmos Environ 33:513–524

    Article  CAS  Google Scholar 

  35. Heal MR, Kirby C, Cape JN (2000) Environ Monit Assess 62:39–54

    Article  CAS  Google Scholar 

  36. Hisham MWM, Grosjean D (1990) Atmos Environ 24A(9):2323–2325

    Google Scholar 

  37. Williams EL, Grosjean D (1989) Brief reports to the scientific and technical community. California Environmental Protection Agency, Air Resources Board, Research Note 89–4, National Technical Information Service, Springfield, VA

    Google Scholar 

  38. Parrish DD, Fehsenfeld FC (2000) Atmos Environ 34:1921–1957

    Article  CAS  Google Scholar 

  39. Gerboles M, Lagler F, Rembges D, Brun C (2003) J Environ Monit 5:529–540

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Subhasis Biswas for his assistance during the Los Angeles field sampling campaign. The project described was supported by grant number ES06214 from the National Institute of Environmental Health Sciences (NIEHS), U.S. National Institutes of Health (NIH), and its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIEHS, NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Staimer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staimer, N., Delfino, R.J., Bufalino, C. et al. A miniaturized active sampler for the assessment of personal exposure to nitrogen dioxide. Anal Bioanal Chem 383, 955–962 (2005). https://doi.org/10.1007/s00216-005-0086-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-0086-6

Keywords

Navigation