Skip to main content

Advertisement

Log in

Testicular germ cell tumor: a comprehensive review

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Testicular tumors are the most common tumors in adolescent and young men and germ cell tumors (TGCTs) account for most of all testicular cancers. Increasing incidence of TGCTs among males provides strong motivation to understand its biological and genetic basis. Gains of chromosome arm 12p and aneuploidy are nearly universal in TGCTs, but TGCTs have low point mutation rate. It is thought that TGCTs develop from premalignant intratubular germ cell neoplasia that is believed to arise from the failure of normal maturation of gonocytes during fetal or postnatal development. Progression toward invasive TGCTs (seminoma and nonseminoma) then occurs after puberty. Both inherited genetic factors and environmental risk factors emerge as important contributors to TGCT susceptibility. Genome-wide association studies have so far identified more than 30 risk loci for TGCTs, suggesting that a polygenic model fits better with the genetic landscape of the disease. Despite high cure rates because of its particular sensitivity to platinum-based chemotherapy, exploration of mechanisms underlying the occurrence, progression, metastasis, recurrence, chemotherapeutic resistance, early diagnosis and optional clinical therapeutics without long-term side effects are urgently needed to reduce the cancer burden in this underserved age group. Herein, we present an up-to-date review on clinical challenges, origin and progression, risk factors, TGCT mouse models, serum diagnostic markers, resistance mechanisms, miRNA regulation, and database resources of TGCTs. We appeal that more attention should be paid to the basic research and clinical diagnosis and treatment of TGCTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ghazarian AA et al (2017) Future of testicular germ cell tumor incidence in the United States: forecast through 2026. Cancer 123(12):2320–2328. https://doi.org/10.1002/cncr.30597

    Article  CAS  PubMed  Google Scholar 

  2. Ushida H et al (2012) Therapeutic potential of SOX2 inhibition for embryonal carcinoma. J Urol 187(5):1876–1881. https://doi.org/10.1016/j.juro.2011.12.058

    Article  CAS  PubMed  Google Scholar 

  3. Yamada Y et al (2017) A novel prognostic factor TRIM44 promotes cell proliferation and migration, and inhibits apoptosis in testicular germ cell tumor. Cancer Sci 108(1):32–41. https://doi.org/10.1111/cas.13105

    Article  CAS  PubMed  Google Scholar 

  4. Gu S et al (2013) Molecular mechanisms of regulation and action of microRNA-199a in testicular germ cell tumor and glioblastomas. PLoS One 8(12):e83980. https://doi.org/10.1371/journal.pone.0083980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liu X et al (2016) microRNA-199a-3p functions as tumor suppressor by regulating glucose metabolism in testicular germ cell tumors. Mol Med Rep 14(3):2311–2320. https://doi.org/10.3892/mmr.2016.5472

    Article  CAS  PubMed  Google Scholar 

  6. Fankhauser CD et al (2015) Frequent PD-L1 expression in testicular germ cell tumors. Br J Cancer 113(3):411–413. https://doi.org/10.1038/bjc.2015.244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vogt AP, Chen Z, Osunkoya AO (2010) Rete testis invasion by malignant germ cell tumor and/or intratubular germ cell neoplasia: what is the significance of this finding? Hum Pathol 41(9):1339–1344. https://doi.org/10.1016/j.humpath.2010.03.005

    Article  PubMed  Google Scholar 

  8. Pinto F et al (2018) Brachyury oncogene is a prognostic factor in high-risk testicular germ cell tumors. Andrology 6(4):597–604. https://doi.org/10.1111/andr.12495

    Article  CAS  PubMed  Google Scholar 

  9. Martinelli C et al (2017) MGMT and CALCA promoter methylation are associated with poor prognosis in testicular germ cell tumor patients. Oncotarget 8(31):50608–50617. https://doi.org/10.18632/oncotarget.11167

    Article  PubMed  Google Scholar 

  10. Zhu Y et al (2016) The polymorphic hMSH5 C85T allele augments radiotherapy-induced spermatogenic impairment. Andrology 4(5):873–879. https://doi.org/10.1111/andr.12203

    Article  CAS  PubMed  Google Scholar 

  11. Yamada Y et al (2016) Prognostic value of CD66b positive tumor-infiltrating neutrophils in testicular germ cell tumor. BMC Cancer 16(1):898. https://doi.org/10.1186/s12885-016-2926-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Atkin NB, Baker MC (1982) Specific chromosome change, i(12p), in testicular tumours? Lancet 2(8311):1349. https://doi.org/10.1016/S0140-6736(82)91557-4

    Article  CAS  PubMed  Google Scholar 

  13. Stock C et al (1996) Isochromosome 12p and maternal loss of 1p36 in a pediatric testicular germ cell tumor. Cancer Genet Cytogenet 91(2):95–100. https://doi.org/10.1016/0165-4608(95)00190-5

    Article  CAS  PubMed  Google Scholar 

  14. Juric D et al (2005) Gene expression profiling differentiates germ cell tumors from other cancers and defines subtype-specific signatures. Proc Natl Acad Sci USA 102(49):17763–17768. https://doi.org/10.1073/pnas.0509082102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rodriguez S et al (2003) Expression profile of genes from 12p in testicular germ cell tumors of adolescents and adults associated with i(12p) and amplification at 12p11.2-p12.1. Oncogene 22(12):1880–1891. https://doi.org/10.1038/sj.onc.1206302

    Article  CAS  PubMed  Google Scholar 

  16. Ezeh UI et al (2005) Human embryonic stem cell genes OCT4, NANOG, STELLAR, and GDF3 are expressed in both seminoma and breast carcinoma. Cancer 104(10):2255–2265. https://doi.org/10.1002/cncr.21432

    Article  CAS  PubMed  Google Scholar 

  17. Korkola JE et al (2006) Down-regulation of stem cell genes, including those in a 200-kb gene cluster at 12p13.31, is associated with in vivo differentiation of human male germ cell tumors. Cancer Res 66(2):820–827. https://doi.org/10.1158/0008-5472.can-05-2445

    Article  CAS  PubMed  Google Scholar 

  18. Albers P et al (2015) Guidelines on testicular cancer: 2015 update. Eur Urol 68(6):1054–1068. https://doi.org/10.1016/j.eururo.2015.07.044

    Article  PubMed  Google Scholar 

  19. Albers P et al (2011) EAU guidelines on testicular cancer: 2011 update. Eur Urol 60(2):304–319. https://doi.org/10.1016/j.eururo.2011.05.038

    Article  PubMed  Google Scholar 

  20. Tarrant WP, Czerniak BA, Guo CC (2013) Relationship between primary and metastatic testicular germ cell tumors: a clinicopathologic analysis of 100 cases. Hum Pathol 44(10):2220–2226. https://doi.org/10.1016/j.humpath.2013.05.004

    Article  PubMed  Google Scholar 

  21. Iida K et al (2014) Metastasectomy as optimal treatment for late relapsing solitary brain metastasis from testicular germ cell tumor: a case report. BMC Res Notes 7:865. https://doi.org/10.1186/1756-0500-7-865

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ushida H et al (2013) Recurrent rhabdomyosarcoma after adjuvant chemotherapy for stage I non-seminomatous germ cell tumor with malignant transformation. Int J Urol 20(5):544–546. https://doi.org/10.1111/j.1442-2042.2012.03197.x

    Article  PubMed  Google Scholar 

  23. Gavriel H, Kleid S (2015) Benign neck metastasis of a testicular germ cell tumor. Int Surg 100(1):164–168. https://doi.org/10.9738/INTSURG-D-13-00157.1

    Article  PubMed  PubMed Central  Google Scholar 

  24. O’Connor A, Dias A, Timon C (2013) Role of neck dissection for metastatic nonseminomatous testicular carcinoma: case report and literature review. J Laryngol Otol 127(10):1038–1039. https://doi.org/10.1017/S0022215113002090

    Article  PubMed  Google Scholar 

  25. Rascol O et al (2012) A proof-of-concept, randomized, placebo-controlled, multiple cross-overs (n-of-1) study of naftazone in Parkinson’s disease. Fundam Clin Pharmacol 26(4):557–564. https://doi.org/10.1111/j.1472-8206.2011.00951.x

    Article  CAS  PubMed  Google Scholar 

  26. Talwar V et al (2002) Intracardiac metastases from a testicular germ cell tumor. J Assoc Physicians India 50:855

    CAS  PubMed  Google Scholar 

  27. do Nascimento FB et al (2016) Right cardiac chambers involvement by a malignant testicular germ cell tumor: an imaging-pathologic correlation. Urology 93:e9–e11. https://doi.org/10.1016/j.urology.2016.03.023

    Article  PubMed  Google Scholar 

  28. Hakiman H et al (2013) Rapid progression of a germ cell tumor encasing the inferior vena cava and aorta following a radical orchiectomy. Rare Tumors 5(2):79–82. https://doi.org/10.4081/rt.2013.e21

    Article  PubMed  PubMed Central  Google Scholar 

  29. Delahunt B et al (1990) Testicular germ cell tumor with pineal metastases. Neurosurgery 26(4):688–691. https://doi.org/10.1097/00006123-199004000-00023

    Article  CAS  PubMed  Google Scholar 

  30. Oing C et al (2014) Nodal, pulmonary and pleural gliomatosis in a 42-year-old-male with non-seminomatous testicular germ cell cancer. Histopathology 65(1):142–143. https://doi.org/10.1111/his.12374

    Article  PubMed  Google Scholar 

  31. Aydiner A et al (1993) Testicular germ cell tumor with gastric metastasis. Acta Oncol 32(4):459–460. https://doi.org/10.3109/02841869309093625

    Article  CAS  PubMed  Google Scholar 

  32. Lauro S et al (2014) Gastric metastases from testicular cancer: case report and review of literature. J Gastrointest Cancer 45(Suppl 1):22–24. https://doi.org/10.1007/s12029-013-9524-4

    Article  PubMed  Google Scholar 

  33. Assimakopoulos SF et al (2006) A case of chondrosarcoma developing in a recurrent retroperitoneal mass after chemotherapy for testicular germ cell tumor. Urol Int 77(1):86–88. https://doi.org/10.1159/000092942

    Article  PubMed  Google Scholar 

  34. Kvammen O et al (2016) Long-term relative survival after diagnosis of testicular germ cell tumor. Cancer Epidemiol Biomark Prev 25(5):773–779. https://doi.org/10.1158/1055-9965.EPI-15-1153

    Article  CAS  Google Scholar 

  35. Cost NG et al (2012) Effect of testicular germ cell tumor therapy on renal function. Urology 80(3):641–648. https://doi.org/10.1016/j.urology.2012.04.064

    Article  PubMed  Google Scholar 

  36. Weijl NI et al (2000) Thromboembolic events during chemotherapy for germ cell cancer: a cohort study and review of the literature. J Clin Oncol 18(10):2169–2178. https://doi.org/10.1200/JCO.2000.18.10.2169

    Article  CAS  PubMed  Google Scholar 

  37. Lange J et al (2017) Cisplatin-related cerebral infarction in testicular germ cell cancer: short report of three Cases and pathomechanism. Clin Neurol Neurosurg 152:76–77. https://doi.org/10.1016/j.clineuro.2016.11.014

    Article  PubMed  Google Scholar 

  38. Azak A et al (2008) Cerebrovascular accident during cisplatin-based combination chemotherapy of testicular germ cell tumor: an unusual case report. Anticancer Drugs 19(1):97–98. https://doi.org/10.1097/CAD.0b013e3282f0777e

    Article  CAS  PubMed  Google Scholar 

  39. Meattini I et al (2010) Ischemic stroke during cisplatin-based chemotherapy for testicular germ cell tumor: case report and review of the literature. J Chemother 22(2):134–136. https://doi.org/10.1179/joc.2010.22.2.134

    Article  CAS  PubMed  Google Scholar 

  40. Nonomura N et al (1997) Secondary acute monocytic leukemia occurring during the treatment of a testicular germ cell tumor. A case report and review of the literature. Urol Int 58(4):239–242. https://doi.org/10.1159/000282992

    Article  CAS  PubMed  Google Scholar 

  41. Matsumoto S et al (2000) Secondary leukemia following ultra high-dose chemotherapy with peripheral blood stem cell autotransplantation for refractory testicular cancer. Nihon Hinyokika Gakkai Zasshi 91(10–11):687–691. https://doi.org/10.5980/jpnjurol1989.91.68

    Article  CAS  PubMed  Google Scholar 

  42. Cerrud-Rodriguez RC, Quinteros MG, Azam M (2017) Internal carotid artery occlusion and stroke as a complication of cisplatin-based chemotherapy for metastatic testicular germ cell tumour. BMJ Case Rep. https://doi.org/10.1136/bcr-2017-220084

    Article  PubMed  PubMed Central  Google Scholar 

  43. Furuhashi K et al (2013) Onco-testicular sperm extraction: testicular sperm extraction in azoospermic and very severely oligozoospermic cancer patients. Andrologia 45(2):107–110. https://doi.org/10.1111/j.1439-0272.2012.01319.x

    Article  CAS  PubMed  Google Scholar 

  44. Roque M et al (2015) Onco-testicular sperm extraction: birth of a healthy baby after fertility preservation in synchronous bilateral testicular cancer and azoospermia. Andrologia 47(4):482–485. https://doi.org/10.1111/and.12292

    Article  CAS  PubMed  Google Scholar 

  45. Kirkali Z et al (2001) Testis sparing surgery for the treatment of a sequential bilateral testicular germ cell tumor. Int J Urol 8(12):710–712. https://doi.org/10.1046/j.1442-2042.2001.00395.x

    Article  CAS  PubMed  Google Scholar 

  46. Demir A et al (2004) Testis-sparing surgery in an adult with bilateral synchronous seminomatous tumor. Int J Urol 11(12):1142–1144. https://doi.org/10.1111/j.1442-2042.2004.00946.x

    Article  PubMed  Google Scholar 

  47. Peltzer K, Pengpid S (2015) Knowledge, attitudes and practice of testicular self-examination among male university students from bangladesh, madagascar, singapore, south africa and turkey. Asian Pac J Cancer Prev 16(11):4741–4743. https://doi.org/10.7314/APJCP.2015.16.11.4741

    Article  PubMed  Google Scholar 

  48. Chen SR, Liu YX (2015) Regulation of spermatogonial stem cell self-renewal and spermatocyte meiosis by Sertoli cell signaling. Reproduction 149(4):R159–R167. https://doi.org/10.1530/REP-14-0481

    Article  CAS  PubMed  Google Scholar 

  49. Chen SR et al (2013) Disruption of genital ridge development causes aberrant primordial germ cell proliferation but does not affect their directional migration. BMC Biol 11:22. https://doi.org/10.1186/1741-7007-11-22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chen SR et al (2015) Loss of Gata4 in Sertoli cells impairs the spermatogonial stem cell niche and causes germ cell exhaustion by attenuating chemokine signaling. Oncotarget 6(35):37012–37027. https://doi.org/10.18632/oncotarget.6115

    Article  PubMed  PubMed Central  Google Scholar 

  51. Rebourcet D et al (2014) Sertoli cells control peritubular myoid cell fate and support adult Leydig cell development in the prepubertal testis. Development 141(10):2139–2149. https://doi.org/10.1242/dev.107029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. DeFalco T et al (2015) Macrophages contribute to the spermatogonial niche in the adult testis. Cell Rep 12(7):1107–1119. https://doi.org/10.1016/j.celrep.2015.07.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen SR, Liu YX (2016) Myh11-Cre is not limited to peritubular myoid cells and interaction between Sertoli and peritubular myoid cells needs investigation. Proc Natl Acad Sci USA 113(17):E2352. https://doi.org/10.1073/pnas.1602873113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang YQ et al (2018) GATA4 is a negative regulator of contractility in testicular peritubular myoid cells. Reproduction. https://doi.org/10.1530/rep-18-0148

    Article  PubMed  PubMed Central  Google Scholar 

  55. Green CD et al (2018) A comprehensive roadmap of murine spermatogenesis defined by single-cell RNA-Seq. Dev Cell 46(5):651–667e610. https://doi.org/10.1016/j.devcel.2018.07.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang M et al (2018) Single-cell RNA sequencing analysis reveals sequential cell fate transition during human spermatogenesis. Cell Stem Cell 23(4):599–614e594. https://doi.org/10.1016/j.stem.2018.08.007

    Article  CAS  PubMed  Google Scholar 

  57. Skakkebaek NE (1972) Possible carcinoma-in situ of the testis. Lancet 2(7776):516–517. https://doi.org/10.1016/S0140-6736(72)91909-5

    Article  CAS  PubMed  Google Scholar 

  58. Kristensen DG et al (2014) Evidence that active demethylation mechanisms maintain the genome of carcinoma in situ cells hypomethylated in the adult testis. Br J Cancer 110(3):668–678. https://doi.org/10.1038/bjc.2013.727

    Article  CAS  PubMed  Google Scholar 

  59. Mitchell RT et al (2014) Intratubular germ cell neoplasia of the human testis: heterogeneous protein expression and relation to invasive potential. Mod Pathol 27(9):1255–1266. https://doi.org/10.1038/modpathol.2013.246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Vasdev N, Moon A, Thorpe AC (2013) Classification, epidemiology and therapies for testicular germ cell tumours. Int J Dev Biol 57(2–4):133–139. https://doi.org/10.1387/ijdb.130031nv

    Article  CAS  PubMed  Google Scholar 

  61. Ottesen AM et al (2003) High-resolution comparative genomic hybridization detects extra chromosome arm 12p material in most cases of carcinoma in situ adjacent to overt germ cell tumors, but not before the invasive tumor development. Genes Chromosomes Cancer 38(2):117–125. https://doi.org/10.1002/gcc.10244

    Article  CAS  PubMed  Google Scholar 

  62. Summersgill B et al (2001) Chromosomal imbalances associated with carcinoma in situ and associated testicular germ cell tumours of adolescents and adults. Br J Cancer 85(2):213–220. https://doi.org/10.1054/bjoc.2001.1889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Di Vizio D et al (2005) Loss of the tumor suppressor gene PTEN marks the transition from intratubular germ cell neoplasias (ITGCN) to invasive germ cell tumors. Oncogene 24(11):1882–1894. https://doi.org/10.1038/sj.onc.1208368

    Article  CAS  PubMed  Google Scholar 

  64. Datta MW et al (2001) Transition from in situ to invasive testicular germ cell neoplasia is associated with the loss of p21 and gain of mdm-2 expression. Mod Pathol 14(5):437–442. https://doi.org/10.1038/modpathol.3880331

    Article  CAS  PubMed  Google Scholar 

  65. Taylor-Weiner A et al (2016) Genomic evolution and chemoresistance in germ-cell tumours. Nature 540(7631):114–118. https://doi.org/10.1038/nature20596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sperger JM et al (2003) Gene expression patterns in human embryonic stem cells and human pluripotent germ cell tumors. Proc Natl Acad Sci USA 100(23):13350–13355. https://doi.org/10.1073/pnas.2235735100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. de Jong J et al (2005) Diagnostic value of OCT3/4 for pre-invasive and invasive testicular germ cell tumours. J Pathol 206(2):242–249. https://doi.org/10.1002/path.1766

    Article  PubMed  Google Scholar 

  68. Rajpert-De Meyts E, Skakkebaek NE (1994) Expression of the c-kit protein product in carcinoma-in situ and invasive testicular germ cell tumours. Int J Androl 17(2):85–92. https://doi.org/10.1111/j.1365-2605.1994.tb01225.x

    Article  CAS  PubMed  Google Scholar 

  69. Emerson RE, Ulbright TM (2010) Intratubular germ cell neoplasia of the testis and its associated cancers: the use of novel biomarkers. Pathology 42(4):344–355. https://doi.org/10.3109/00313021003767355

    Article  CAS  PubMed  Google Scholar 

  70. Ota S et al (2006) Oncofetal protein glypican-3 in testicular germ-cell tumor. Virchows Arch 449(3):308–314. https://doi.org/10.1007/s00428-006-0238-x

    Article  CAS  PubMed  Google Scholar 

  71. Zynger DL et al (2010) Glypican 3 has a higher sensitivity than alpha-fetoprotein for testicular and ovarian yolk sac tumour: immunohistochemical investigation with analysis of histological growth patterns. Histopathology 56(6):750–757. https://doi.org/10.1111/j.1365-2559.2010.03553.x

    Article  PubMed  Google Scholar 

  72. Cao D et al (2009) SALL4 is a novel diagnostic marker for testicular germ cell tumors. Am J Surg Pathol 33(7):1065–1077. https://doi.org/10.1097/PAS.0b013e3181a13eef

    Article  PubMed  Google Scholar 

  73. Shen H et al (2018) Integrated molecular characterization of testicular germ cell tumors. Cell Rep 23(11):3392–3406. https://doi.org/10.1016/j.celrep.2018.05.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Skakkebaek NE, Berthelsen JG (1981) Carcinoma-in situ of the testis and invasive growth of different types of germ cell tumours. A revised germ cell theory. Int J Androl 4(Suppl s4):26–33. https://doi.org/10.1111/j.1365-2605.1981.tb00647.x

    Article  PubMed  Google Scholar 

  75. Rajpert-De Meyts E, Kvist M, Skakkebaek NE (1996) Heterogeneity of expression of immunohistochemical tumour markers in testicular carcinoma in situ: pathogenetic relevance. Virchows Arch 428(3):133–139. https://doi.org/10.1007/BF00200655

    Article  CAS  PubMed  Google Scholar 

  76. de Graaff WE et al (1992) Ploidy of testicular carcinoma in situ. Lab Investig 66(2):166–168. https://doi.org/10.1007/s00761-005-0952-z

    Article  PubMed  Google Scholar 

  77. de Jong B et al (1990) Pathogenesis of adult testicular germ cell tumors. A cytogenetic model. Cancer Genet Cytogenet 48(2):143–167. https://doi.org/10.1016/0165-4608(90)90115-Q

    Article  PubMed  Google Scholar 

  78. Srigley JR et al (1988) The ultrastructure and histogenesis of male germ neoplasia with emphasis on seminoma with early carcinomatous features. Ultrastruct Pathol 12(1):67–86. https://doi.org/10.3109/01913128809048477

    Article  CAS  PubMed  Google Scholar 

  79. Kernek KM et al (2003) Identical allelic losses in mature teratoma and other histologic components of malignant mixed germ cell tumors of the testis. Am J Pathol 163(6):2477–2484. https://doi.org/10.1016/S0002-9440(10)63602-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Jones TD et al (2006) Clonal origin of metastatic testicular teratomas. Clin Cancer Res 12(18):5377–5383. https://doi.org/10.1158/1078-0432.CCR-06-0444

    Article  CAS  PubMed  Google Scholar 

  81. Nettersheim D et al (2012) Establishment of a versatile seminoma model indicates cellular plasticity of germ cell tumor cells. Genes Chromosomes Cancer 51(7):717–726. https://doi.org/10.1002/gcc.21958

    Article  CAS  PubMed  Google Scholar 

  82. Nettersheim D et al (2015) BMP inhibition in seminomas initiates acquisition of pluripotency via NODAL signaling resulting in reprogramming to an embryonal carcinoma. PLoS Genet 11(7):e1005415. https://doi.org/10.1371/journal.pgen.1005415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Nettersheim D et al (2016) SOX2 is essential for in vivo reprogramming of seminoma-like TCam-2 cells to an embryonal carcinoma-like fate. Oncotarget 7(30):47095–47110. https://doi.org/10.18632/oncotarget.9903

    Article  PubMed  PubMed Central  Google Scholar 

  84. Hemminki K, Li X (2004) Familial risk in testicular cancer as a clue to a heritable and environmental aetiology. Br J Cancer 90(9):1765–1770. https://doi.org/10.1038/sj.bjc.6601714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chia VM et al (2009) Risk of cancer in first- and second-degree relatives of testicular germ cell tumor cases and controls. Int J Cancer 124(4):952–957. https://doi.org/10.1002/ijc.23971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Neale RE et al (2008) Testicular cancer in twins: a meta-analysis. Br J Cancer 98(1):171–173. https://doi.org/10.1038/sj.bjc.6604136

    Article  CAS  PubMed  Google Scholar 

  87. Swerdlow AJ et al (1997) Risks of breast and testicular cancers in young adult twins in England and Wales: evidence on prenatal and genetic aetiology. Lancet 350(9093):1723–1728. https://doi.org/10.1016/s0140-6736(97)05526-8

    Article  CAS  PubMed  Google Scholar 

  88. Teh BT et al (1999) Familial testicular cancer: lack of evidence for trinucleotide repeat expansions and association with PKD1 in one family. J Med Genet 36(4):348–349. https://doi.org/10.1046/j.1365-2788.1999.00200.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kanetsky PA et al (2009) Common variation in KITLG and at 5q31.3 predisposes to testicular germ cell cancer. Nat Genet 41(7):811–815. https://doi.org/10.1038/ng.393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Rapley EA et al (2009) A genome-wide association study of testicular germ cell tumor. Nat Genet 41(7):807–810. https://doi.org/10.1038/ng.394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Turnbull C et al (2010) Variants near DMRT1, TERT and ATF7IP are associated with testicular germ cell cancer. Nat Genet 42(7):604–607. https://doi.org/10.1038/ng.607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kanetsky PA et al (2011) A second independent locus within DMRT1 is associated with testicular germ cell tumor susceptibility. Hum Mol Genet 20(15):3109–3117. https://doi.org/10.1093/hmg/ddr207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Dalgaard MD et al (2012) A genome-wide association study of men with symptoms of testicular dysgenesis syndrome and its network biology interpretation. J Med Genet 49(1):58–65. https://doi.org/10.1136/jmedgenet-2011-100174

    Article  PubMed  Google Scholar 

  94. Chung CC et al (2013) Meta-analysis identifies four new loci associated with testicular germ cell tumor. Nat Genet 45(6):680–685. https://doi.org/10.1038/ng.2634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ruark E et al (2013) Identification of nine new susceptibility loci for testicular cancer, including variants near DAZL and PRDM14. Nat Genet 45(6):686–689. https://doi.org/10.1038/ng.2635

    Article  CAS  PubMed  Google Scholar 

  96. Schumacher FR et al (2013) Testicular germ cell tumor susceptibility associated with the UCK2 locus on chromosome 1q23. Hum Mol Genet 22(13):2748–2753. https://doi.org/10.1093/hmg/ddt109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Litchfield K et al (2015) Multi-stage genome-wide association study identifies new susceptibility locus for testicular germ cell tumour on chromosome 3q25. Hum Mol Genet 24(4):1169–1176. https://doi.org/10.1093/hmg/ddu511

    Article  CAS  PubMed  Google Scholar 

  98. Kristiansen W et al (2015) Two new loci and gene sets related to sex determination and cancer progression are associated with susceptibility to testicular germ cell tumor. Hum Mol Genet 24(14):4138–4146. https://doi.org/10.1093/hmg/ddv129

    Article  CAS  PubMed  Google Scholar 

  99. Litchfield K et al (2017) Identification of 19 new risk loci and potential regulatory mechanisms influencing susceptibility to testicular germ cell tumor. Nat Genet 49(7):1133–1140. https://doi.org/10.1038/ng.3896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wang Z et al (2017) Meta-analysis of five genome-wide association studies identifies multiple new loci associated with testicular germ cell tumor. Nat Genet 49(7):1141–1147. https://doi.org/10.1038/ng.3879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Paumard-Hernandez B et al (2018) Whole exome sequencing identifies PLEC, EXO5 and DNAH7 as novel susceptibility genes in testicular cancer. Int J Cancer 143(8):1954–1962. https://doi.org/10.1002/ijc.31604

    Article  CAS  PubMed  Google Scholar 

  102. Runyan C et al (2006) Steel factor controls midline cell death of primordial germ cells and is essential for their normal proliferation and migration. Development 133(24):4861–4869. https://doi.org/10.1242/dev.02688

    Article  CAS  PubMed  Google Scholar 

  103. Yamaji M et al (2008) Critical function of Prdm14 for the establishment of the germ cell lineage in mice. Nat Genet 40(8):1016–1022. https://doi.org/10.1038/ng.186

    Article  CAS  PubMed  Google Scholar 

  104. Matson CK et al (2010) The mammalian doublesex homolog DMRT1 is a transcriptional gatekeeper that controls the mitosis versus meiosis decision in male germ cells. Dev Cell 19(4):612–624. https://doi.org/10.1016/j.devcel.2010.09.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Gill ME et al (2011) Licensing of gametogenesis, dependent on RNA binding protein DAZL, as a gateway to sexual differentiation of fetal germ cells. Proc Natl Acad Sci USA 108(18):7443–7448. https://doi.org/10.1073/pnas.1104501108

    Article  PubMed  PubMed Central  Google Scholar 

  106. Seetharam V et al (2014) Bilateral cryptorchidism with bilateral synchronous abdominal testicular germ cell tumour. BMJ Case Rep. https://doi.org/10.1136/bcr-2013-203085

    Article  PubMed  PubMed Central  Google Scholar 

  107. Chemes HE et al (2015) Is a CIS phenotype apparent in children with disorders of sex development? Milder testicular dysgenesis is associated with a higher risk of malignancy. Andrology 3(1):59–69. https://doi.org/10.1111/andr.301

    Article  CAS  PubMed  Google Scholar 

  108. Machiela MJ et al (2017) Mosaic chromosome Y loss and testicular germ cell tumor risk. J Hum Genet 62(6):637–640. https://doi.org/10.1038/jhg.2017.20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Dieckmann KP et al (2014) Contralateral testicular biopsy in patients with germ cell tumors: practice patterns in Germany 2014. Urologe A 53(11):1651–1655. https://doi.org/10.1007/s00120-014-3657-3

    Article  PubMed  Google Scholar 

  110. Morimoto LM et al (2018) Neonatal hormone concentrations and risk of testicular germ cell tumors (TGCT). Cancer Epidemiol Biomark Prev 27(4):488–495. https://doi.org/10.1158/1055-9965.EPI-17-0879

    Article  CAS  Google Scholar 

  111. Matin A et al (1999) Susceptibility to testicular germ-cell tumours in a 129.MOLF-Chr 19 chromosome substitution strain. Nat Genet 23(2):237–240. https://doi.org/10.1038/13874

    Article  CAS  PubMed  Google Scholar 

  112. Zhu R, Matin A (2014) Tumor loci and their interactions on mouse chromosome 19 that contribute to testicular germ cell tumors. BMC Genet 15:65. https://doi.org/10.1186/1471-2156-15-65

    Article  PubMed  PubMed Central  Google Scholar 

  113. Heaney JD et al (2012) Germ cell pluripotency, premature differentiation and susceptibility to testicular teratomas in mice. Development 139(9):1577–1586. https://doi.org/10.1242/dev.076851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Spiller CM et al (2012) Endogenous Nodal signaling regulates germ cell potency during mammalian testis development. Development 139(22):4123–4132. https://doi.org/10.1242/dev.083006

    Article  CAS  PubMed  Google Scholar 

  115. Dawson EP et al (2018) Delayed male germ cell sex-specification permits transition into embryonal carcinoma cells with features of primed pluripotency. Development. https://doi.org/10.1242/dev.156612

    Article  PubMed  PubMed Central  Google Scholar 

  116. Krentz AD et al (2009) The DM domain protein DMRT1 is a dose-sensitive regulator of fetal germ cell proliferation and pluripotency. Proc Natl Acad Sci USA 106(52):22323–22328. https://doi.org/10.1073/pnas.0905431106

    Article  PubMed  PubMed Central  Google Scholar 

  117. Heaney JD et al (2008) Loss of the transmembrane but not the soluble kit ligand isoform increases testicular germ cell tumor susceptibility in mice. Cancer Res 68(13):5193–5197. https://doi.org/10.1158/0008-5472.CAN-08-0779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Youngren KK et al (2005) The Ter mutation in the dead end gene causes germ cell loss and testicular germ cell tumours. Nature 435(7040):360–364. https://doi.org/10.1038/nature03595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kimura T et al (2003) Conditional loss of PTEN leads to testicular teratoma and enhances embryonic germ cell production. Development 130(8):1691–1700. https://doi.org/10.1242/dev.00392

    Article  CAS  PubMed  Google Scholar 

  120. Carouge D et al (2016) Parent-of-origin effects of A1CF and AGO2 on testicular germ-cell tumors, testicular abnormalities, and fertilization bias. Proc Natl Acad Sci USA 113(37):E5425–E5433. https://doi.org/10.1073/pnas.1604773113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Li H et al (2016) Impaired planar germ cell division in the testis, caused by dissociation of RHAMM from the spindle, results in hypofertility and seminoma. Cancer Res 76(21):6382–6395. https://doi.org/10.1158/0008-5472.CAN-16-0179

    Article  CAS  PubMed  Google Scholar 

  122. Pierpont TM et al (2017) Chemotherapy-induced depletion of OCT4-positive cancer stem cells in a mouse model of malignant testicular cancer. Cell Rep 21(7):1896–1909. https://doi.org/10.1016/j.celrep.2017.10.078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Barlow LJ, Badalato GM, McKiernan JM (2010) Serum tumor markers in the evaluation of male germ cell tumors. Nat Rev Urol 7(11):610–617. https://doi.org/10.1038/nrurol.2010.166

    Article  CAS  PubMed  Google Scholar 

  124. Murray MJ, Huddart RA, Coleman N (2016) The present and future of serum diagnostic tests for testicular germ cell tumours. Nat Rev Urol 13(12):715–725. https://doi.org/10.1038/nrurol.2016.170

    Article  CAS  PubMed  Google Scholar 

  125. Spiekermann M et al (2015) MicroRNA miR-371a-3p in serum of patients with germ cell tumours: evaluations for establishing a serum biomarker. Andrology 3(1):78–84. https://doi.org/10.1111/j.2047-2927.2014.00269.x

    Article  CAS  PubMed  Google Scholar 

  126. Syring I et al (2015) Circulating serum miRNA (miR-367-3p, miR-371a-3p, miR-372-3p and miR-373-3p) as biomarkers in patients with testicular germ cell cancer. J Urol 193(1):331–337. https://doi.org/10.1016/j.juro.2014.07.010

    Article  CAS  PubMed  Google Scholar 

  127. Murray MJ et al (2016) A pipeline to quantify serum and cerebrospinal fluid microRNAs for diagnosis and detection of relapse in paediatric malignant germ-cell tumours. Br J Cancer 114(2):151–162. https://doi.org/10.1038/bjc.2015.429

    Article  CAS  PubMed  Google Scholar 

  128. Gillis AJ et al (2013) Targeted serum miRNA (TSmiR) test for diagnosis and follow-up of (testicular) germ cell cancer patients: a proof of principle. Mol Oncol 7(6):1083–1092. https://doi.org/10.1016/j.molonc.2013.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Terbuch A et al (2018) MiR-371a-3p serum levels are increased in recurrence of testicular germ cell tumor patients. Int J Mol Sci. https://doi.org/10.3390/ijms19103130

    Article  PubMed  PubMed Central  Google Scholar 

  130. Tu SM et al (2016) Intratumoral heterogeneity: role of differentiation in a potentially lethal phenotype of testicular cancer. Cancer 122(12):1836–1843. https://doi.org/10.1002/cncr.29996

    Article  CAS  PubMed  Google Scholar 

  131. Comiter CV et al (1998) Prognostic features of teratomas with malignant transformation: a clinicopathological study of 21 cases. J Urol 159(3):859–863. https://doi.org/10.1016/S0022-5347(01)63754-6

    Article  CAS  PubMed  Google Scholar 

  132. Bartkova J et al (2007) DNA damage response in human testes and testicular germ cell tumours: biology and implications for therapy. Int J Androl 30(4):282–291. https://doi.org/10.1111/j.1365-2605.2007.00772.x (discussion 291)

    Article  CAS  PubMed  Google Scholar 

  133. Cavallo F, Feldman DR, Barchi M (2013) Revisiting DNA damage repair, p53-mediated apoptosis and cisplatin sensitivity in germ cell tumors. Int J Dev Biol 57(2–4):273–280. https://doi.org/10.1387/ijdb.130135mb

    Article  CAS  PubMed  Google Scholar 

  134. Peng HQ et al (1993) Mutations of the p53 gene do not occur in testis cancer. Cancer Res 53(15):3574–3578. https://doi.org/10.1007/BF01525437

    Article  CAS  PubMed  Google Scholar 

  135. Gutekunst M et al (2011) p53 hypersensitivity is the predominant mechanism of the unique responsiveness of testicular germ cell tumor (TGCT) cells to cisplatin. PLoS One 6(4):e19198. https://doi.org/10.1371/journal.pone.0019198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Awuah SG, Riddell IA, Lippard SJ (2017) Repair shielding of platinum-DNA lesions in testicular germ cell tumors by high-mobility group box protein 4 imparts cisplatin hypersensitivity. Proc Natl Acad Sci USA 114(5):950–955. https://doi.org/10.1073/pnas.1615327114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Oechsle K et al (2011) Long-term survival after treatment with gemcitabine and oxaliplatin with and without paclitaxel plus secondary surgery in patients with cisplatin-refractory and/or multiply relapsed germ cell tumors. Eur Urol 60(4):850–855. https://doi.org/10.1016/j.eururo.2011.06.019

    Article  CAS  PubMed  Google Scholar 

  138. Juliachs M et al (2014) The PDGFRbeta-AKT pathway contributes to CDDP-acquired resistance in testicular germ cell tumors. Clin Cancer Res 20(3):658–667. https://doi.org/10.1158/1078-0432.CCR-13-1131

    Article  CAS  PubMed  Google Scholar 

  139. Lopez-Saavedra A et al (2016) MAD2gamma, a novel MAD2 isoform, reduces mitotic arrest and is associated with resistance in testicular germ cell tumors. Cell Cycle 15(15):2066–2076. https://doi.org/10.1080/15384101.2016.1198863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Koster R et al (2010) Cytoplasmic p21 expression levels determine cisplatin resistance in human testicular cancer. J Clin Invest 120(10):3594–3605. https://doi.org/10.1172/JCI41939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Koster R et al (2011) Disruption of the MDM2-p53 interaction strongly potentiates p53-dependent apoptosis in cisplatin-resistant human testicular carcinoma cells via the Fas/FasL pathway. Cell Death Dis 2:e148. https://doi.org/10.1038/cddis.2011.33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Liu L et al (2013) MicroRNA-302a sensitizes testicular embryonal carcinoma cells to cisplatin-induced cell death. J Cell Physiol 228(12):2294–2304. https://doi.org/10.1002/jcp.24394

    Article  CAS  PubMed  Google Scholar 

  143. Huang H et al (2014) microRNA-383 impairs phosphorylation of H2AX by targeting PNUTS and inducing cell cycle arrest in testicular embryonal carcinoma cells. Cell Signal 26(5):903–911. https://doi.org/10.1016/j.cellsig.2014.01.016

    Article  CAS  PubMed  Google Scholar 

  144. Nitzsche B et al (2012) Anti-tumour activity of two novel compounds in cisplatin-resistant testicular germ cell cancer. Br J Cancer 107(11):1853–1863. https://doi.org/10.1038/bjc.2012.481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Cavallo F et al (2012) Reduced proficiency in homologous recombination underlies the high sensitivity of embryonal carcinoma testicular germ cell tumors to cisplatin and poly (adp-ribose) polymerase inhibition. PLoS One 7(12):e51563. https://doi.org/10.1371/journal.pone.0051563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Litchfield K et al (2015) Whole-exome sequencing reveals the mutational spectrum of testicular germ cell tumours. Nat Commun 6:5973. https://doi.org/10.1038/ncomms6973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Honecker F et al (2009) Microsatellite instability, mismatch repair deficiency, and BRAF mutation in treatment-resistant germ cell tumors. J Clin Oncol 27(13):2129–2136. https://doi.org/10.1200/JCO.2008.18.8623

    Article  CAS  PubMed  Google Scholar 

  148. Feldman DR et al (2014) Presence of somatic mutations within PIK3CA, AKT, RAS, and FGFR3 but not BRAF in cisplatin-resistant germ cell tumors. Clin Cancer Res 20(14):3712–3720. https://doi.org/10.1158/1078-0432.CCR-13-2868

    Article  CAS  PubMed  Google Scholar 

  149. de Haas EC et al (2008) Variation in bleomycin hydrolase gene is associated with reduced survival after chemotherapy for testicular germ cell cancer. J Clin Oncol 26(11):1817–1823. https://doi.org/10.1200/JCO.2007.14.1606

    Article  PubMed  Google Scholar 

  150. de Haas EC et al (2010) Association of PAI-1 gene polymorphism with survival and chemotherapy-related vascular toxicity in testicular cancer. Cancer 116(24):5628–5636. https://doi.org/10.1002/cncr.25300

    Article  CAS  PubMed  Google Scholar 

  151. Oldenburg J et al (2007) Cisplatin-induced long-term hearing impairment is associated with specific glutathione s-transferase genotypes in testicular cancer survivors. J Clin Oncol 25(6):708–714. https://doi.org/10.1200/JCO.2006.08.9599

    Article  CAS  PubMed  Google Scholar 

  152. Fung C et al (2012) Chemotherapy refractory testicular germ cell tumor is associated with a variant in armadillo repeat gene deleted in velco-cardio-facial syndrome (ARVCF). Front Endocrinol (Lausanne) 3:163. https://doi.org/10.3389/fendo.2012.00163

    Article  CAS  Google Scholar 

  153. Ross CJ et al (2009) Genetic variants in TPMT and COMT are associated with hearing loss in children receiving cisplatin chemotherapy. Nat Genet 41(12):1345–1349. https://doi.org/10.1038/ng.478

    Article  CAS  PubMed  Google Scholar 

  154. Bagrodia A et al (2016) Genetic determinants of cisplatin resistance in patients with advanced germ cell tumors. J Clin Oncol 34(33):4000–4007. https://doi.org/10.1200/JCO.2016.68.7798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Seidel C et al (2016) Efficacy and safety of gemcitabine, oxaliplatin, and paclitaxel in cisplatin-refractory germ cell cancer in routine care—registry data from an outcomes research project of the German Testicular Cancer Study Group. Urol Oncol 34(4):167.e21–167.e28. https://doi.org/10.1016/j.urolonc.2015.11.007

    Article  CAS  Google Scholar 

  156. Oechsle K et al (2011) Preclinical and clinical activity of sunitinib in patients with cisplatin-refractory or multiply relapsed germ cell tumors: a Canadian Urologic Oncology Group/German Testicular Cancer Study Group cooperative study. Ann Oncol 22(12):2654–2660. https://doi.org/10.1093/annonc/mdr026

    Article  CAS  PubMed  Google Scholar 

  157. Jain A et al (2014) Phase II clinical trial of oxaliplatin and bevacizumab in refractory germ cell tumors. Am J Clin Oncol 37(5):450–453. https://doi.org/10.1097/COC.0b013e31827de90d

    Article  CAS  PubMed  Google Scholar 

  158. Mego M et al (2016) Phase II study of everolimus in refractory testicular germ cell tumors. Urol Oncol 34(3):122.e117–122.e122. https://doi.org/10.1016/j.urolonc.2015.10.010

    Article  CAS  Google Scholar 

  159. Ozata DM et al (2017) Loss of miR-514a-3p regulation of PEG3 activates the NF-kappa B pathway in human testicular germ cell tumors. Cell Death Dis 8(5):e2759. https://doi.org/10.1038/cddis.2016.464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Rijlaarsdam MA et al (2015) Identification of known and novel germ cell cancer-specific (embryonic) miRs in serum by high-throughput profiling. Andrology 3(1):85–91. https://doi.org/10.1111/andr.298

    Article  CAS  PubMed  Google Scholar 

  161. Cheung HH et al (2011) Methylation of an intronic region regulates miR-199a in testicular tumor malignancy. Oncogene 30(31):3404–3415. https://doi.org/10.1038/onc.2011.60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Chen BF et al (2014) A miR-199a/miR-214 self-regulatory network via PSMD10, TP53 and DNMT1 in testicular germ cell tumor. Sci Rep 4:6413. https://doi.org/10.1038/srep06413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Liu J et al (2017) miR2233p regulates cell growth and apoptosis via FBXW7 suggesting an oncogenic role in human testicular germ cell tumors. Int J Oncol 50(2):356–364. https://doi.org/10.3892/ijo.2016.3807

    Article  CAS  PubMed  Google Scholar 

  164. Yang NQ et al (2014) miRNA-1297 induces cell proliferation by targeting phosphatase and tensin homolog in testicular germ cell tumor cells. Asian Pac J Cancer Prev 15(15):6243–6246

    Article  PubMed  Google Scholar 

  165. Yang NQ et al (2016) Crosstalk between Meg3 and miR-1297 regulates growth of testicular germ cell tumor through PTEN/PI3K/AKT pathway. Am J Transl Res 8(2):1091–1099

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Cerami E et al (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2(5):401–404. https://doi.org/10.1158/2159-8290.CD-12-0095

    Article  PubMed  Google Scholar 

  167. Gao J et al (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6(269):pl1. https://doi.org/10.1126/scisignal.2004088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Cutcutache I et al (2015) Exome-wide sequencing shows low mutation rates and identifies novel mutated genes in seminomas. Eur Urol 68(1):77–83. https://doi.org/10.1016/j.eururo.2014.12.040

    Article  CAS  PubMed  Google Scholar 

  169. Litchfield K et al (2016) Rare disruptive mutations in ciliary function genes contribute to testicular cancer susceptibility. Nat Commun 7:13840. https://doi.org/10.1038/ncomms13840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Mikuz G, Colecchia M (2012) Teratoma with somatic-type malignant components of the testis. A review and an update. Virchows Arch 461(1):27–32. https://doi.org/10.1007/s00428-012-1251-x

    Article  PubMed  Google Scholar 

  171. Giannatempo P et al (2016) Treatment and clinical outcomes of patients with teratoma with somatic-type malignant transformation: an international collaboration. J Urol 196(1):95–100. https://doi.org/10.1016/j.juro.2015.12.082

    Article  PubMed  Google Scholar 

  172. Bondarenko G et al (2015) Patient-derived tumor xenografts are susceptible to formation of human lymphocytic tumors. Neoplasia 17(9):735–741. https://doi.org/10.1016/j.neo.2015.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Wetterauer C et al (2015) Early development of human lymphomas in a prostate cancer xenograft program using triple knock-out immunocompromised mice. Prostate 75(6):585–592. https://doi.org/10.1002/pros.22939

    Article  PubMed  Google Scholar 

  174. Colombo PE et al (2015) Ovarian carcinoma patient derived xenografts reproduce their tumor of origin and preserve an oligoclonal structure. Oncotarget 6(29):28327–28340. https://doi.org/10.18632/oncotarget.5069

    Article  PubMed  PubMed Central  Google Scholar 

  175. Ben-David U et al (2017) Patient-derived xenografts undergo mouse-specific tumor evolution. Nat Genet 49(11):1567–1575. https://doi.org/10.1038/ng.3967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Mazzieri R et al (2011) Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells. Cancer Cell 19(4):512–526. https://doi.org/10.1016/j.ccr.2011.02.005

    Article  CAS  PubMed  Google Scholar 

  177. Hvarness T et al (2013) Phenotypic characterisation of immune cell infiltrates in testicular germ cell neoplasia. J Reprod Immunol 100(2):135–145. https://doi.org/10.1016/j.jri.2013.10.005

    Article  CAS  PubMed  Google Scholar 

  178. Siska PJ et al (2017) Deep exploration of the immune infiltrate and outcome prediction in testicular cancer by quantitative multiplexed immunohistochemistry and gene expression profiling. Oncoimmunology 6(4):e1305535. https://doi.org/10.1080/2162402X.2017.1305535

    Article  PubMed  PubMed Central  Google Scholar 

  179. Cheng L, Lyu B, Roth LM (2017) Perspectives on testicular germ cell neoplasms. Hum Pathol 59:10–25. https://doi.org/10.1016/j.humpath.2016.08.002

    Article  CAS  PubMed  Google Scholar 

  180. Milia-Argeiti E et al (2014) EMMPRIN/CD147-encriched membrane vesicles released from malignant human testicular germ cells increase MMP production through tumor-stroma interaction. Biochim Biophys Acta 1840(8):2581–2588. https://doi.org/10.1016/j.bbagen.2014.02.026

    Article  CAS  PubMed  Google Scholar 

  181. Bi XC et al (2012) Extracellular matrix metalloproteinase inducer: a novel poor prognostic marker for human seminomas. Clin Transl Oncol 14(3):190–196. https://doi.org/10.1007/s12094-012-0783-5

    Article  CAS  PubMed  Google Scholar 

  182. Batool A et al (2018) A miR-125b/CSF1-CX3CL1/tumor-associated macrophage recruitment axis controls testicular germ cell tumor growth. Cell Death Dis 9(10):962. https://doi.org/10.1038/s41419-018-1021-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Cierna Z et al (2016) Prognostic value of programmed-death-1 receptor (PD-1) and its ligand 1 (PD-L1) in testicular germ cell tumors. Ann Oncol 27(2):300–305. https://doi.org/10.1093/annonc/mdv574

    Article  CAS  PubMed  Google Scholar 

  184. Shah S et al (2016) Clinical response of a patient to anti-PD-1 immunotherapy and the immune landscape of testicular germ cell tumors. Cancer Immunol Res 4(11):903–909. https://doi.org/10.1158/2326-6066.CIR-16-0087

    Article  PubMed  PubMed Central  Google Scholar 

  185. Loh KP, Fung C (2017) Novel therapies in platinum-refractory metastatic germ cell tumor: a case report with a focus on a PD-1 inhibitor. Rare Tumors 9(2):6867. https://doi.org/10.4081/rt.2017.6867

    Article  PubMed  PubMed Central  Google Scholar 

  186. Adra N et al (2018) Phase II trial of pembrolizumab in patients with platinum refractory germ-cell tumors: a hoosier cancer research network study GU14-206. Ann Oncol 29(1):209–214. https://doi.org/10.1093/annonc/mdx680

    Article  CAS  PubMed  Google Scholar 

  187. Okeley NM et al (2010) Intracellular activation of SGN-35, a potent anti-CD30 antibody-drug conjugate. Clin Cancer Res 16(3):888–897. https://doi.org/10.1158/1078-0432.CCR-09-2069

    Article  CAS  PubMed  Google Scholar 

  188. Ratta R et al (2016) Immunotherapy advances in uro-genital malignancies. Crit Rev Oncol Hematol 105:52–64. https://doi.org/10.1016/j.critrevonc.2016.06.012

    Article  PubMed  Google Scholar 

  189. Schonberger S et al (2018) Brentuximab vedotin exerts profound antiproliferative and pro-apoptotic efficacy in CD30-positive as well as cocultured CD30-negative germ cell tumour cell lines. J Cell Mol Med 22(1):568–575. https://doi.org/10.1111/jcmm.13344

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Young Elite Scientists Sponsorship Program by CAST (Grant no. YESS20160118 to SR Chen); National Natural Science Foundation of China (31501198 to SR Chen); CAS-TWAS President’s Fellowship for International PhD Students (to A Batool).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su-Ren Chen.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batool, A., Karimi, N., Wu, XN. et al. Testicular germ cell tumor: a comprehensive review. Cell. Mol. Life Sci. 76, 1713–1727 (2019). https://doi.org/10.1007/s00018-019-03022-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03022-7

Keywords

Navigation