Supplementary Appendix 1. Stata code and calculations used to obtain model-based:

1) Age-adjusted Annual Percentage Change in Table 2: Using 'Overall' as an example
2) Predicted Age-industry adjusted rates in Figure 1

Input variables:

num	numerator, i.e number of deaths of interest in each strata allows for change in slope corresponding to the first legislative change. Coded 0 for 1984-1992, 1 for 1993, 2 for 1994, ..., 22 for 2014. If the x2 coefficient is negative, the first legislative change is having a positive impact (i.e. deaths are decreasing).
x3	allows for change in slope corresponding to the second legislative change. Coded 0 for 1984-2002, 1 for 2003, 2 for 2004, ..., 12 for 2014. If the x3 coefficient is negative, the second legislative change is having a positive impact (i.e. deaths are decreasing).
year2	calendar year; 1 for 1984, 2 for 1985, ..., 30 for 2014
agegp6	age group; 6 categories
ind_combined1	grouped industry classifications; 10 categories
denom	denominator (employed usually resident NZ population estimates)

1) Change in slope coefficients, $95 \% \mathrm{Cl}$ and p-value for Post-1:Pre obtained from estimates relating to $x 2$ in the above model. Similarly, Post-2:Post-1 values were obtained from estimates relating to $x 3$
```
xi: poisson num x2 x3 year2 i.agegp6, exp(denom)
*Pre age-adj APC
nlcom (exp(_b[year2]) -1)*100
*Post1 age-adj APC
nlcom (exp(_b[year2] + _b[x2])-1)*100
*Post2 age-adj APC
nlcom (exp(_b[year2] + _b[x2] + _b[x3])-1)*100
2)
xi: poisson num x2 x3 year2 i.agegp6 i.ind_combined1, exp(denom)
predict predict_n,n
I year agegp6 ind_combined1 predict_n if year==1985
collapse (sum) num denom predict_n, by(year)
gen predict_rate_avg=(predict_n/denom)*100000
```

