RT Journal Article SR Electronic T1 Job-exposure matrix for historical exposures to rubber dust, rubber fumes and n-Nitrosamines in the British rubber industry JF Occupational and Environmental Medicine JO Occup Environ Med FD BMJ Publishing Group Ltd SP 259 OP 267 DO 10.1136/oemed-2018-105182 VO 76 IS 4 A1 Mira Hidajat A1 Damien Martin McElvenny A1 William Mueller A1 Peter Ritchie A1 John W Cherrie A1 Andrew Darnton A1 Raymond M Agius A1 Hans Kromhout A1 Frank de Vocht YR 2019 UL http://oem.bmj.com/content/76/4/259.abstract AB Objectives To develop a quantitative historical job-exposure matrix (JEM) for rubber dust, rubber fumes and n-Nitrosamines in the British rubber industry for 1915–2002 to estimate lifetime cumulative exposure (LCE) for a cohort of workers with 49 years follow-up.Methods Data from the EU-EXASRUB database—rubber dust (n=4157), rubber fumes (n=3803) and n-Nitrosamines (n=10 115) collected between 1977 and 2002—were modelled using linear mixed-effects models. Sample year, stationary/personal measurement, industry sector and measurement source were included as fixed explanatory variables and factory as random intercept. Model estimates and extrapolations were used to construct a JEM covering all departments in both sectors of the rubber manufacturing industries for the years 1915–2002. JEM-estimates were linked to all cohort members to calculate LCE. Sensitivity analyses related to assumptions about extrapolation of time trends were also conducted.Results Changes in rubber dust exposures ranged from −6.3 %/year (crude materials/mixing) to −1.0 %/year (curing) and −6.5 %/year (crude materials/mixing) to +0.5 %/year (finishing, assembly and miscellaneous) for rubber fumes. Declines in n-Nitrosamines ranged from −17.9 %/year (curing) to −1.3 %/year (crude materials and mixing). Mean LCEs were 61 mg/m3-years (rubber dust), 15.6 mg/ m3-years (rubber fumes), 2483.2 µg/m3-years (n-Nitrosamines sum score), 18.6 µg/m3-years (N-nitrosodimethylamine) and 15.0 µg/m3-years (N-itrosomorpholine).Conclusions All exposures declined over time. Greatest declines in rubber dust and fumes were found in crude materials and mixing and for n-Nitrosamines in curing/vulcanising and preprocessing. This JEM and estimated LCEs will allow for evaluation of exposure-specific excess cancer risks in the British rubber industry.