TY - JOUR T1 - Polychlorinated dibenzo-<em>p</em>-dioxin and dibenzofuran concentrations in serum samples of workers at intermittently burning municipal waste incinerators in Japan JF - Occupational and Environmental Medicine JO - Occup Environ Med SP - 362 LP - 368 DO - 10.1136/oem.59.6.362 VL - 59 IS - 6 AU - S Kumagai AU - S Koda AU - T Miyakita AU - M Ueno Y1 - 2002/06/01 UR - http://oem.bmj.com/content/59/6/362.abstract N2 - Objectives: To find whether or not incinerator workers employed at intermittently burning municipal incineration plants are exposed to high concentrations of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). Methods: 20 Workers employed at three municipal waste incineration plants (incinerator workers) and 20 controls were studied. The previous job, dietary, smoking, and body weight and height were obtained from a questionnaire survey. Concentrations of PCDDs and PCDFs were measured in serum samples of the workers and the deposited dust of the plants. The influence of occupational exposure on concentrations of PCDDs and PCDFs in serum samples was examined by multiple regression analysis. Results: Dust analysis showed that dominant constituents were octachlorodibenzo-p-dioxin (OCDD) and 1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin (HpCDD) among the PCDDs, and 1,2,3,4,6,7,8-heptachlorodibenzofuran (HpCDF) and octachlorodibenzofuran (OCDF) among the PCDFs. The toxicity equivalents (TEQs) of summed PCDDs and PCDFs in the deposited dust were 0.91, 33, and 11 ng TEQ/g, respectively, for plants I, II, and III. The means of TEQ in serum samples of summed PCDDs and PCDFs in the incinerator workers and controls were 22.8 and 16.4 pg TEQ/g lipid for area I, 29.4 and 19.3 pg TEQ/g lipid for area II, and 22.8 and 24.9 pg TEQ/g lipid for area III, which were almost the same as for the general population of Japan. No significant differences in the TEQ of PCDDs and TEQ of PCDDs and PCDDs were found between the incinerator workers and the controls. However, the TEQ of PCDFs was significantly higher among the incinerator workers in areas I and II, and the 1,2,3,4,6,7,8-HpCDF concentration was also significantly higher for all three areas. When the occupational exposure index for each constituent of PCDDs and PCDFs was defined as the product of the duration of employment at the incineration plant and the concentration of the constituent in the deposited dust, multiple regression analysis showed that the concentrations of HxCDF, HpCDF, and TEQ of PCDFs in serum samples increased with the occupational exposure index. The multiple regression analysis also suggested that significant factors affecting the concentrations in serum samples were area for HxCDD, age for TCDD, PeCDD, PeCDF, TEQ of PCDDs, TEQ of PCDFs, and TEQ of summed PCDDs and PCDFs, and BMI for HxCDD, HpCDD, and OCDD. Conclusion: This study showed that incinerator workers employed at intermittently burning incineration plants were not necessarily exposed to high concentrations of PCDDs and PCDFs. However, the increases in the concentrations in serum of HxCDF, HpCDF and TEQ of PCDFs with the occupational exposure index suggest that the incinerator workers had inhaled dust containing PCDDs and PCDFs during their work. ER -