develop and deploy a multi-sensor box for assessing working life exposures (exposure at and outside work) during a working week in a case study on respiratory health as part of the EU Exposome Project for Health and Occupational Research (EPHOR) project.

Material and Methods A multi-exposure sensor box (particulate matter (PM), noise, light, UV and temperature) has been developed and is currently being deployed with the aim to assess exposures during a working week in relation to acute respiratory health among 300 mild asthma patients. The sensors were evaluated against conventional equipment separately. Several PM sensors were co-located in different occupational settings with gravimetric samplers and the Aerodynamic Particle Sizer (APS). Sensors for noise, light, UV and temperature were tested against conventional instruments in various environmental settings.

Results and Conclusions Low-cost PM sensors and the APS correlated reasonably well in different occupational settings (high-resolution data) \((R^2=0.4–0.6) \). Comparing the low-cost PM2.5 mass concentration from the sensors with the respirable gravimetric results (TWA) showed a moderate correlation \((R^2=0.5) \). A semi-quantitative comparison of TWA exposures with PM mass concentrations showed higher correlations \((R^2>0.75) \). A method for calibrating the PM sensor results to reflect different workplace and nonworkplace aerosols is being developed. The noise, light, UV and temperature sensors demonstrated R2 values of 0.9 and above with reference monitors in laboratory or field comparisons. Calibration equations have been developed based on these relationships. Along with the evaluation results of the different sensors, the preliminary results of the multi sensor box among ~25 case study subjects will be presented.

Climate change

AIR QUALITY AND HEALTH CO-BENEFITS OF CLIMATE CHANGE MITIGATION AND ADAPTATION ACTIONS BY 2030: AN INTERDISCIPLINARY MODELING STUDY IN AHMEDABAD, INDIA

10.1136/OEM-2023-EPICOH.167

Introduction An unprecedented urbanization and population encroachment in Indian cities is making it’s urban population more vulnerable to climate change and air pollution effects. Using an interdisciplinary modelling approach, our team has estimated the health co-benefits of mitigation and adaptation policies in Ahmedabad, India, through collaboration among the Indian Institute of Tropical Meteorology (IITM), Gujarat Energy Research & Management Institute (GERMI), Indian Institute of Public Health Gandhinagar (IIPH-G), and the Natural Resources Defense Council (NRDC) and an applied research project funded by the Wellcome Trust’s Our Planet, Our Health Program.

Method We selected Ahmedabad city as it’s experiencing extreme heat wave events in summer. The project aim was to estimate the local health benefits of actions to reduce air pollution emissions and adapt to climate change in Ahmedabad, India, by the year 2030 using open-access BenMAP modelling software. We compared the relative health impacts of putting two climate strategies in place by 2030: more reliance on cleaner, renewable energy sources instead of coal; and expanding cool roof installation area across the city.

Results Our results yielded local, city-specific insights on climate change and energy demand, as well as air quality and health. On air quality and health, annual average fine particle air pollution (PM2.5) would climb to 75.18 ug/m3 by 2030 under BAU. But with mitigation and adaptation strategies put in place, air quality would improve; lower PM2.5 concentrations (70.95 ug/m3) would mean 1,414 fewer all-cause deaths across the city by 2030. Furthermore, thousands more premature deaths could be avoided by meeting air quality standards: under the National Clean Air Program (NCAP), 6,510 annually; under the National Ambient Air Quality Standards (NAAQS), 9,047 annually; and under the World Health Organization (WHO) air quality guidelines, 17,369 annually. Moreover, one sees how climate adaptations can mean saving energy, and climate mitigation can mean saving lives.

Shift work

TIME SCHEDULE AND THE TOTAL AMOUNT OF NIGHT SHIFTS IN RELATION TO DEPRESSION AMONG HONG KONG NURSES

Li Beixi, Priscilla MY Lee, Natalie HY Tang, Cherry Wan, Julie YT Ma, Joey WY Chan, Yun Kwok Wing, Lap Ah Tse. 1JC School of Public Health and Primary Care, the Chinese University of Hong Kong, Hong Kong SAR, China; 2JC School of Public Health and Primary Care, the Chinese University of Hong Kong, Hong Kong SAR, China/Department of Clinical Medicine-Department of Clinical Epidemiology, Aarhus University, Aarhus, Denmark; 3Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China

10.1136/OEM-2023-EPICOH.168

Introduction Night shift work has recently been recognized as an important occupational hazard linked with depression. However, the extent to which shift workers’ mental well-being is negatively affected by night shift exposure has rarely been assessed. This study examined the association between cumulative night shift work exposure and the risk of depression.

Material and Methods A cross-sectional study, using a computer-based questionnaire, was conducted among Hong Kong nurses between March and May 2022. Social demographic information and detailed shift work history (frequency of morning/evening/night shift and timetable, number of years and nights worked) were collected. Depression was assessed by Hospital Anxiety and Depression Scale. Logistic regression model adjusting for relevant covariates was used to assess the association between depression and night shift exposure. Ethics approval: CREC 2021.228

Results A total of 866 (82.6%) female nurses and 182 (17.4%) male nurses responded, with an average age of 33.5 ± 7.2 years. The mean duration of night shift work of the nurses was 8.3 ± 7.0 years and their cumulative night shifts