Introduction Many studies have shown a link between exposure to pesticides and a higher level of DNA damage. However, longitudinal studies are rare and little is known about long term DNA damage and cancer risk in exposed subjects.

Objectives i) Quantify DNA damage for the women included in a French agricultural cohort at two time points, ii) study the relationship between DNA damage and agricultural tasks, and iii) between DNA damage and cancer incidence.

Methods 320 female agricultural workers were enrolled from 1997 to 2000 and completed a face-to-face questionnaire. 245 gave a blood sample at enrolment (T0). Ten years later, 104 donated another sample (T10). Using the comet assay with an internal historical negative control, we quantified DNA damage in PBMC on 200 nuclei using a 4-category visual scoring system.

Results At enrolment, there were no differences in DNA damage for farm owners/co-owners (n=135, 55%, p=0.84), or participants in livestock tasks within our study population (n=159, 65%, p=0.23). Pesticide exposure through application of anti-parasites to livestock (n=138, 56%, p=0.25) and disinfection of milking equipment (n=117, 48%, p=0.78) did not influence DNA damage. However, damage tended to be higher for those implicated in milking (n=109, 44%, p=0.18). Women who carried out administrative (n=180, 73%) and domestic tasks (n=213, 87%) tended to have lower damage scores (p=0.08 and p=0.07, respectively), as well as women who undertook other tasks had significantly lower damage (p=0.04) than those not involved. From enrolment to end of 2017, 37 incident cancer cases were diagnosed, of which 21 were breast cancer cases. No association was found between DNA damage and cancer incidence (p=0.45).

Conclusion Occupational exposure in the agricultural field could be evaluated using the comet assay. Women’s involvement to tasks not related to farm upkeep show a lower level of DNA damage than those not undertaking these tasks.

Alterations of immune markers among male rotating shift workers in Spain – the Hormonit study

Introduction Few preliminary studies suggest that night shift work is associated with a desynchronization of rhythmic immune parameters, which may explain in part the increased risk for infection, cardiometabolic disorders, and cancer in shift workers.

Objectives To examine how night shift work alters cellular immune markers.

Methods This study included 46 male rotating shift workers from a car industry in Barcelona, Spain, sampled twice toward the end of a 3-week night shift (22:00-06:00 hrs) and a 3-week day shift (06:00-14:00 hrs) rotation. We collected four blood samples per worker; before and after during each shift (night shift at 06:00 and 14:00; day shift at 22:00 and 6:00). We measured 30 cytokines, chemokines and growth factors using Luminex technology and examined within-person variations in analytes between sampling time-points and shifts. We applied linear mixed models to examine within-person associations between shift and analytes, comparing samples taken at 6:00am during each shift. We also conducted a factor analysis using analyte levels from all 4 time points for each individual to identify common factors and determine if these factors were altered by shift work.

Results We observed lower levels of several analytes during the night shift (cytokines IL17, IL12, IL4, TNFα, and cytokine receptors IL1RA, IL2R; chemokines IP10, MIP1α, MIP1β, and RANTES; growth factors GCSF, FGF, EGF, HGF, and VEGF) compared to the day shift. In the factor analysis, the main factor (explaining 57% of the variance) was negatively associated with night shift (beta: -0.14, 95%CI -0.25 to -0.03, p-value less than 0.01), indicating that night shift affects immune marker levels in this pathway. This factor included growth factors (FGF, EGF, HGF), Th1 type cytokines (IL15, IL2) and pro-inflammatory cytokines and chemokines (IL1β, MIP1α, MIP1β).

Conclusion Our results show that night shift is associated with disruption in multiple immune response pathways.

Literature review of biological monitoring studies to assess healthcare worker’s exposure to antineoplastic drugs

Introduction Antineoplastic drugs, also known as hazardous drugs, are used to treat cancer. Healthcare workers’ exposure to these agents may lead to DNA damage and adverse reproductive effects. Exposure to antineoplastic drugs can be assessed via biological monitoring.

Objectives To conduct a literature review of studies examining biological monitoring of healthcare workers exposed to antineoplastic drugs to identify trends and knowledge gaps.

Methods The literature search was performed on three databases: Proquest, Web of Science and PubMed. For inclusion, an article had to be in English and published between 2005 and 2020. Search terms included ‘antineoplastic drugs’ or ‘hazardous drugs’ AND ‘healthcare worker’ or ‘nurse’ or ‘blood’ or ‘urine’ or ‘biomarkers’. We included studies that assessed antineoplastic drug exposure in healthcare workers.

Results Overall, the literature review resulted in 70 unique articles - 30 examined urine as the matrix, 31 had non-urine samples and 9 collected both urine and non-urine samples. We included articles that collected either spot samples or 24-hr voids. Cyclophosphamide was the most common analyte (69%) with a detection limit ranging from 0.09 to 0.20 ng/ml. Approximately 75% of the articles reported at least one urine sample had detectable levels of drug. In some instances, urinary drug contamination was found even though workers wore personal protective equipment. For those studies that collected other matrices, blood and exfoliated buccal cells were the most common specimens. A majority (81%) reported that there was a statistically significant difference in results between exposed and non-exposed populations. Many studies reported that safe work practices, which includes the use of personal protective equipment, may not be adequate to protect healthcare workers.