Exposure Assessment-1

01D.1 DERMAL PAH EXPOSURE IN SWEDISH FIREFIGHTERS AND POLICE FORENSIC INVESTIGATORS – PRELIMINARY RESULTS FROM TAPE STRIPPING ON WRIST AND COLLARBONE

1,2Mattias Sjöström, 3Anneli Julander, 4,5Bo Strandberg, 1,2Marie Lewné, 1,2Carolina Bigert*
1Unit of Occupational Medicine, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden; 2Centre for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden; 2Unit of Work Environment Toxicology, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden; 4Section of Occupational and Environmental Medicine, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; 5Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
10.1136/OEM-2019-EPI.23

Objectives Firefighters (FFs) and police forensic investigators (PFI) may be exposed to a wide range of particles and combustion products, such as the carcinogenic benzo(a)pyrene and other polycyclic aromatic hydrocarbons (PAHs). The aim of this study was to evaluate the dermal exposure to 32 different PAHs for FFs and PFIs.

Methods The skin was sampled by tape stripping (three consecutive tapes) on lower wrist and collarbone area after end of work shift of 7 FFs (fire starters; team leaders inside the burning house; team leaders outside the burning house) during training fires (14 samples), 9 PFIs investigating the aftermath of fire events (10 samples) and 7 office workers/control persons (7 samples). We used semipermeable membrane dialysis for clean-up of the tape strip extracts and analysed the PAHs by gas chromatography mass spectrometry.

Results The median sum 32 PAH dermal exposure of the measured groups was in the range of 2 to 16 ng/cm² on the wrist and 2 to 4.6 ng/cm² on the collarbone area. Both gaseous and particle-associated PAHs were present on skin with large variability in levels between specific PAHs. The most abundant PAHs were phenanthrene, fluoranthene, and chrysene. For sum 32 PAHs the exposure of the wrist was statistically significantly higher for FF fire starters and PFIs than for controls. FF fire starters had the highest exposure for benzo (a)pyrene. For the collarbone area, the FFs and PFIs had lower exposures than on the wrist and similar to the levels for control persons.

Conclusions The dermal occupational PAH exposure for FFs and PFIs was generally higher on the wrist than on the collarbone area. Thus, the wrists seem to be less well protected by personal protective equipment than the collarbone area. On the collarbone area, the dermal PAH exposure levels were similar between FFs, PFIs and control persons.

01D.2 OBJECTIVE MEASUREMENT OF WORK-ENVIRONMENT CARCINOGENIC EXPOSURES IN FLORIDA FIREFIGHTERS USING SILICONE-BASED PASSIVE SAMPLING WRISTBANDS

Alberto Caban-Martinez*, Katerina Santiago, Jeramy Baum, Emre Dikici, Natasha Shafer Solie, Sylvia Daunert, Sapna Deo, Erin Kobetz. University of Miami, Miller School of Medicine, Miami, USA
10.1136/OEM-2019-EPI.24

Firefighters are likely to be exposed to many toxic chemicals in the performance of their work duties such as polycyclic aromatic hydrocarbons (PAHs). Chemical exposures may occur through dermal, oral, or inhalation pathways. Passive sampling devices are used to quester organic molecules through passive diffusion and provide time-weighted averages of chemical concentrations. This pilot study uses silicone-based wristbands as a personal passive sampler to detect known carcinogens during a 24 hour work shift. Twenty-four wristbands were deployed across various fire services throughout South Florida. Prior to deployment, bands were cleaned using a standardized cleaning protocol to remove contamination and optimize the surface for absorption. Wristbands were then packaged in air tight bags to prevent contamination. Wristbands were worn on fire service personnel and collected at the end of a 24 hour work shift. Chemical contaminants were then extracted from the wristband and analyzed for PAHs—identified using the EPA IRIS, California Proposition 65, and IRAC datasets—using gas chromatography-mass spectrometry. The average number of chemicals found across all wristbands (n=24) was 23 with 4 categorized as carcinogenic to humans (i.e., Benzo [b]fluoranthene, Benzo[j]fluoranthene, Chrysene, and Naphthalene). All bands had at least one PAH present, specifically, 87.5% contained Benzo[b]fluoranthene (mean=5.23 ng/band), 50% contained Benzo[j]fluoranthene (mean=2.05 ng/band), 79.2% contained Chrysene (mean=9.55 ng/band), and 100% contained Naphthalene (mean=176.53 ng/ band). Actual types of exposure compounds is likely to be larger than the observed data as the group of PAHs detected was limited to three existing datasets. Silicone-based wristbands are feasible to use within the fire service to detect and characterize ambient hazardous chemical compounds. These personal self-samplers used during a 24 hour collection period identified various PAHs in the firefighter work environment. Objective measures of harmful chemical exposures in the fire service should be monitored with a comprehensive surveillance system that includes personal sampler devices.

01D.3 FUMIGANT AND CHEMICAL RESIDUE 8-HOUR EXPOSURES IN WORKERS HANDLING CARGO FROM SHIPPING CONTAINERS AND EXPORT LOGS IN NEW ZEALAND

1Ruth Hintz*, 1Andrea Mannerjé, 1Bill Glass, 1Dave McLean, 1,2Neil Pearce, 1Jeroen Douwes. 1Massey University, Wellington, New Zealand; 2Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
10.1136/OEM-2019-EPI.25

Background Previous studies found elevated concentrations of fumigants and other chemicals in the air of unopened shipping containers, which led to the assumption that workers were likely to be highly exposed. This study assessed personal 8 hour exposures in workers handling cargo from shipping containers or export logs, which were fumigated prior to loading.

Methods 191 personal 8 hour air samples were collected and analysed for 1,2-dibromoethane, chloropicrin, ethylene oxide, hydrogen cyanide, hydrogen phosphide and methyl bromide, 1,2-dichloroethane, C2-alkylbenzenes, acetaldehyde, ammonia, benzene, formaldehyde, methanol, styrene and toluene. Additive Mixture Values were calculated using the Work Exposure (WES) standard set by Worksafe NZ and the Threshold Limit Values (TLV) set by the ACGIH. Linear regression was conducted to assess associations between time spent inside shipping containers and exposure (n=98).

Abstracts

Occup Environ Med. first published as 10.1136/OEM-2019-EPI.25 on 24 April 2019. Downloaded from http://oem.bmj.com/ on September 14, 2023 by guest. Protected by copyright.
Occupational Exposure to Formaldehyde in France in 2015

Laurène Delabre*, Loïc Garas, Marie Houot, Corinne Pilorget, Santé Publique France, Saint-maurice, France; University Claude Bernard Lyon1, Ifsttar, UMRESTTE, UMR T_9405, Lyon, France

Context Formaldehyde has been used in a large range of activities for decades. It was classified as human carcinogenic in 2004 by the International Agency for Research on Cancer and in France, formaldehyde has been regulated as a carcinogen since 2007.

The aim of this work is to describe the occupational exposure to formaldehyde in France in 2015 and to identify the most exposed activities.

Method A formaldehyde job-exposure matrix, developed under the MATGÉNÉ programme, provides an exhaustive and retrospective exposure assessment for all jobs in France. These data were linked with the 2015 French census, annually elaborated from 2013 to 2017, to estimate the occupational exposure prevalence by gender, occupation, industries and worker status.

Results In 2015, 90 000 workers were occupationally exposed to formaldehyde (3.5% of the French population at work), 60 600 (4.6%) among men and 29 400 (2.4%) among women.

The industries with the highest prevalence exposure rate were for men veterinary area (8.8%), wood industries (7.7%) and agriculture (4.8%); for women, veterinary area (7.3%), fishing and aquaculture (5.3%) and agriculture (5.1%).

The exposed workers are retrieved in agriculture (26%), healthcare sectors (13.5%) and specialized construction work (12%) for employees and agriculture (69.6%), specialized construction work (13.5%) and other personal services (8.1%) for people with worker status different (mostly self-employed).

Conclusion These results, the first describing the occupational exposure to formaldehyde in France, according to gender for the entire working population, show the importance of regulating the variation in occupational exposure prevalence rates. This information will help in the surveillance of this occupational risk and to prioritize prevention actions.