Epidemiological Descriptions of Occupational Health Effects of Climate Change

Bruno Lemke, Tord Kjellstrom. NMIT, Nelson, New Zealand; CHIRP, Nelson, New Zealand; ANU, Canberra, Australia

10.1136/OEM-2019-EPI.193

There have been many laboratory studies of the effect of heat on the health of individuals in sport, at work or in the military. However, epidemiological studies are needed to develop impact assessment of climate change. In this presentation we outline the development and use of population-exposure risk functions for different heat effects.

The first risk function is for heat discomfort based on the predicted mean vote with 10% population feeling discomfort at WBGT=21°C and with 90% affected at 29°C.

The second population risk function is for heat exhaustion which we derive by using epidemiological data from the US military. 10% of the population is affected by heat exhaustion at WBGT=31°C increasing up to 90% of the population affected at a WBGT=38°C.

The most severe population risk is heat stroke for which we use hospital data to calculate 10% of the population affected by heat stroke at WBGT=41°C and 90% of the population at WBGT=44°C.

These health effects of heat create different durations of ill health, with serious heat stroke causing prolonged periods of dis-ability. Based on climate modelling and our risk functions the number of people affected globally can be calculated. For heat stroke, few persons working in the shade at 300W metabolic rate, will currently suffer from heat levels that can cause heat stroke. By 2085 half a million workers (at 300W) will be exposed to heat levels that cause heat stroke. As for becoming totally exhausted (and unable to work) while working at 300W in the sun, currently that stands at about 124 million worldwide, but in 2085 that number will jump to 835 million.

Additional epidemiological studies are utilised to validate these risk estimates at local and national level.

HEAT AND INJURY IN THE WORKPLACE: PERSPECTIVES FROM HEALTH AND SAFETY REPRESENTATIVES

Blessen Varghese*, Alana Hansen, Susan Williams, Peng Bi, Dino Pisaniello. School of Public Health, The University of Adelaide, Adelaide, Australia

10.1136/OEM-2019-EPI.194

Introduction Hot weather poses occupational health and safety concerns for outdoor workers or those in non-cooled indoor environments. The risk of occupational injuries increases during hot weather, however limited understanding exists on underlying factors associated with this increase in risk. While recommendations and guidelines for preventing heat-related health impacts include hydration, cooling practices, adequate ventilation and rescheduling work, the extent to which these recommendations are adopted in workplaces is currently unknown.

Methods A national online survey was conducted among health and safety representatives (HSRs) to better understand the nature of heat-related injuries. Responses relating to risk factors and preventive measures associated with reported injuries in workplaces were identified using log-poission regression models.

Results In total, 222 HSRs completed the survey. Overall, more than a third (34%) of HSRs reported that injuries or incidents caused by hot/very humid weather occur sometimes/often in their workplace.

Factors found to be positively associated with reported injuries included ‘the wearing of personal protective equipment (PPE),’ ‘inadequate resources and facilities’ and ‘new workers’.

For outdoor workers, the most frequently adopted preventive measures were provision of PPE, sunscreen and access to cool drinking water. HSRs reported more injuries if certain preventive measures (rescheduling work to cooler times and shaded rest/work areas) were adopted never/rarely/sometimes compared to often/always.

Access to cool drinking water and provision of PPE were the most frequently adopted preventive measures for indoor workers. For this group, HSRs reported more injuries if certain preventive measures (self-pacing, shielding of heat sources and adequate ventilation) were adopted never/rarely/sometimes.

Conclusion Findings indicate that organisational issues, workplace hazards, personal factors and preventive measures, are all determinants of heat-related injuries in Australian workplaces. Widening adoption of prevention measures such as work rescheduling, self-pacing, provision of shade and adequate ventilation could reduce incidence of heat-related injuries in outdoor and indoor workplaces.

EXPLORE OCCUPATIONAL INJURY EXPERIENCES DURING HOT WEATHER: A NATIONAL SURVEY OF HEALTH AND SAFETY PROFESSIONALS

Blessen Varghese*, Dino Pisaniello, Alana Hansen, Susan Williams, Peng Bi. School of Public Health, The University of Adelaide, Adelaide, Australia

10.1136/OEM-2019-EPI.195

Introduction Exposure to extreme heat can lead to adverse health effects and contribute to work-related injuries. However, there is limited understanding of how physical injuries arise in hot weather. A study of the perspectives of