Abstracts

Results WBGs exceeded threshold limit values for moderate/ heavy work for 73% outdoor workers (28.9°C±2.4°C) and 67% indoor workers (28.8°C±3.5°C). Heat stress and heat-strain indicators were significantly associated (p=0.0001) and outdoor workers had 2.2 times greater risk of heat-strain during hot seasons (95% CI: 1.695–2.937). Compared to indoor workers, the outdoor workers ran a higher risk of self-reported health decrements (OR: 6.4; 95% CI: 3.884–10.350; p=0.0001), dehydration (OR: 3.0; 95% CI: 2.352–3.999) and productivity losses (OR: 8.0; 95% CI: 4.911–13.382). In select occupations, while indoor workers exposed to chronic high-heat had a higher percentage of kidney stones (9%), the outdoor workers with long years of heat exposures had the higher risk of reduced kidney function (14%) due to repeated dehydration, volume depletion, and Acute Kidney Injury.

Conclusion We discuss implications for workers’ health and productivity as climate modeling shows seriously increasing outdoor and indoor heat problems without suitable control measures for cooling. Strong protective labor policies and research are imperative to avoid serious health impacts and to maintain productivity.

07E.4 ESTIMATING ECONOMIC IMPACT OF HEAT ON CHINA’S LABOR PRODUCTIVITY: NEW EVIDENCE FROM A CGE MODEL

High heat exposure and heat-related health impacts is a well-known occupational health hazard. Though recent studies have quantified high heat impacts on labor productivity in occupational group, little is known about the scale of economic impacts of labor productivity losses, resulting in inadequate policy response. Besides, sectors that suffer most from heat, such as agriculture, service and construction, have extensive inter-dependent relationship with other sectors in the economy. Therefore, it is also important to include these indirect impacts, to avoid the underestimation of the economy-wide impacts.

Computable general equilibrium (CGE) model can capture direct and indirect economic impact of heat on labor productivity and do the comprehensive analysis. In this study, we used WBGs to estimate future labor productivity changes. Meanwhile we employed a China dynamic CGE model (CHEER) with 2012 as base year in the paper to investigate the economic impacts of heat on labor productivity and to find out the specific sectors’ losses and the whole-economy losses in China. Taking temperature projections (daily maximum temperature, daily minimum temperature, and daily average temperature) under RCP scenario, population projections (demographic age structure and employment structure) under SSP scenario in China as input and dividing China’s economic sector into 22 sectors in our model, we analyzed 22 sectors’ economic impacts in the long term.

Based on these scenarios, our study quantifies the full scope of economic impact of heat on labor productivity and analyze the changes of GDP, specific sectors output and industrial structure in the future. Our study could contribute to the understanding of social cost of carbon in China. A range of measures for different economic sectors were also suggested to reduce future economic loss from heat in China. Future research needs were discussed at the end of the paper.

O7E.5 NEW INITIATIVES IN INTERNATIONAL COLLABORATION FOR DESCRIBING THE OCCUPATIONAL HEAT HAZARDS VIA EPIDEMIOLOGICAL STUDIES AND MODELLING

Jason Lee*.

10.1136/OEM-2019-EPI.185

The negative effects of heat stress on work tolerance are well known. In order to optimise exercise tolerance in the heat, various physiological strategies can be employed to alter heat strain such as optimising work-rest cycles, maximising aerobic fitness, heat acclimatisation, pre-exercise cooling and fluid ingestion. In order to optimise workers’ health and productivity in the heat, there is an urgent need for collaborative efforts across various disciplines. A holistic heat management programme requires accurate quantification of the impact due to heat stress before formulating and evaluating the eventual heat mitigation strategies. The International Commission on Occupational Health Scientific Committee on Thermal Factors can serve as an effective platform for dedicated scientists to network and for active research and analysis specific to protection of working people from excessive heat and cold exposures in current and future work environments, including analysis of climate change impact and mitigation analysis. This platform will enable members of Scientific Committee of Thermal Factors to become co-authors on reports in major scientific journals, to collaborate across country boundaries, to get recognition for their own research work, and to be part of future funded global activities.

O8A.1 ESTIMATING THE BURDEN OF LUNG CANCER DUE TO OCCUPATIONAL EXPOSURE TO RADON GAS

1Cheryl Peters*, 3Joanne Kim, 3Chooie Song, 4Calvin Ge, 4Paul Demers. 1Alberta Health Services, Calgary, Canada; 2University of Calgary, Calgary, Canada; 3McGill University, Montreal, Canada; 4Occupational Cancer Research Centre, Toronto, Canada; 5Utrecht University, Utrecht, Netherlands; 6University of Toronto, Toronto, Canada

10.1136/OEM-2019-EPI.187

Background Radon is a well-known cause of lung cancer. Our goal was to estimate the prevalence and level of occupational exposure to radon, and to estimate the current lung cancer burden caused by radon exposure in Canadian workplaces.

Methods Highly exposed (i.e. underground) workers were assigned exposure proportions at the national level using
CAREX methodology. Exposure for the indoor working population was estimated using province-specific radon measurements from the Canadian federal building survey (n=12 870 samples). The proportion of workers exposed to specific ranges of radon (50–100, 100–150, 150–200, 200–400, 400–800, >800 Bq/m³) were calculated and we assigned the midpoint of the range as the average radon concentration for each exposure group. For the >800 Bq/m³ category, the province-specific mean of measurements >800 Bq/m³ was assigned. The above exposure assessment was applied to a population model of the historical Canadian labour force and exposures between 1961 and 2001 (the risk exposure period) were considered as contributing to cancer cases in 2011. The BEIR VI exposure-age-concentration model was used to assign relative risks by exposure category. The population attributable fraction was calculated using Levin’s equation.

Results There were an estimated 4.4 million indoor workers and 26 000 highly exposed workers exposed to radon during the risk exposure period. Nearly 80% of these workers were exposed below 50 Bq/m³ (half the WHO reference level). Combining the indoor and highly exposed workers, we calculated that 0.80% of lung cancers are attributable to occupational radon exposure; this equates to 188 lung cancer cases per year.

Conclusions Ours was the first study to use a data-driven approach to estimate radon exposure and lung cancer burden for indoor workers. Some of the attributable cases can be prevented by reducing workers’ exposure at workplace.

Observations on multiple metrics of night work, information on early definition of surrogates of night work related to CD, inclusion of DEE and RCS exposures in WA mines may explain the lack of association between these exposures and lung cancer. Over 10 million U.S. adults and ~15%–20% worldwide work night shifts. Shift work, a complex exposure scenario, can cause circadian disruption (CD) and possible adverse health effects such as breast cancer. Although there have been a plethora of meta-analysis on shift work and breast cancer, these are not very informative because of inconsistent definition of shift work across studies.

The U.S. National Toxicology Program (NTP) conducted a systematic review (SR) to determine whether night shift work should be listed in the Report on Carcinogens (RoC). The SR included a review of cancer epidemiology studies and mechanistic studies of CD and cancer. NTP developed a protocol, based on scientific input gathered during a public workshop, which identified key issues for conducting the SR: definition of surrogates of night work related to CD, inclusion of multiple metrics of night work, information on early age at exposure when breast tissue is most susceptible, cancer subtypes, effect modifiers and confounders, and cohort truncation. Up to three reviewers evaluated the potential for bias and study sensitivity of each of the 26 cohort and case-control studies considered in the assessment, with five excluded due to exposure assessment concerns. To reach an overall conclusion, findings were integrated across studies, considering factors listed above and confidence in the evidence from each study.

11 of 13 most informative studies and 6 of 8 less informative night shift work studies found increased risks of breast cancer related to night shift work. Excess risks were found mainly among women working frequent nights for long durations starting at an early age (e.g., persistent night shift work). Mechanistic data provided evidence that night shift work causes CD, which plays a major role in its carcinogenicity.

In conclusion, NTP recommends that persistent night shift work that causes CD be listed in the RoC.

Abstracts

**O8A.3 MINING EXPOSURES AND LUNG CANCER IN CONTEMPORARY WESTERN AUSTRALIAN MINERS**

1Nita Sodhi-Berry*, 1Nicholas de Klerk, 1Peter Franklin, 1Alison Reid, 1Un Fritschi, 
2Bill Muck, 3Roel Vermeulen, 3Susan Peters.  
1Occupational Respiratory Epidemiology, School of Population and Global Health, The University of Western Australia, Perth, Australia;  
2Telethon Kids Institute, Nedlands, Australia;  
3School of Public Health, Curtin University, Bentley, Australia;  
4Department of Respiratory Medicine, Sir Charles Gardner Hospital, Nedlands, Australia;  
5Environmental Epidemiology Division, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands

**Objectives** Mining is associated with exposures to various lung carcinogens such as diesel engine exhaust (DEE) and respirable crystalline silica (RCS). We aimed to determine if lung cancer incidence was higher in Western Australian (WA) miners than the general population and if risk varied within the cohort according to exposures and work or job types.

**Methods** Exposure data for 1 72 398 miners living and working in WA between 1996 and 2013 was combined with administrative WA cancer and death data until June 2017. Causal Incidence Ratios (CIRs) were calculated for general population comparisons. Hazard Ratios (HRs) were derived from multivariable Cox regression models including sex, only-underground work, ore-type (gold, iron-ore, other metal, non-metal, unknown or multi-ore mines) and quantitative estimates of DEE (measured as elemental carbon) and RCS, after adjusting for ever-smoker status and entry-age. Additional analyses were done after lagging exposures by 15 years.

**Results** Mean DEE and RCS cumulative exposures were estimated as 0.15 mg/m³-years (std:0.37) and 0.09 mg/m³-years (std:0.18), respectively. Miners had lower lung cancer incidence than the general population (observed=382; expected=538.11; CIR:0.71, 95% CI:0.64–0.78). Within the mining cohort, higher lung cancer risks were observed for: females vs. males (HR:1.44, 95% CI:0.97–2.03); ever-smokers vs. never-smokers (HR:10.1, 95% CI:6.37–16.1); only-underground vs. only-surface miners (HR:1.72, 95% CI:1.02–2.90); only gold vs. multi-ore miners (HR:1.44, 95% CI:1.01–2.05); and only iron ore vs. multi-ore miners (HR:1.47, 95% CI:1.07–2.04). Neither DEE (HR:1.01, 95% CI:0.89–1.14) nor RCS (HR:0.89, 95% CI:0.61–1.3) was significantly associated with incidence. There was no significant difference in estimates after lagging exposures.

**Conclusion** Miners had lower risk of lung cancer than the general population. Workers mining exclusively in underground, iron ore or gold mines had higher lung cancer risks than their peers, as did ever-smokers and females. Low levels of DEE and RCS exposures in WA mines may explain the lack of association between these exposures and lung cancer.