BRIDGING THE GAP BETWEEN CLINICAL CASES AND AGGREGATION OF WORK-RELATED HEALTH PROBLEMS

Abstracts

incidence, trends and type of occupational disease (OD) and ii) incapacity for work due to ODs. It is hypothesized that workers in lower and higher SEP still differ in health disparities from an occupational perspective.

Methods From a Dutch cohort of occupational physicians (OPs), ODs assessed by OPs were retrieved over a seven year period (2010–2016) for lower and higher SEP groups. Incidence and type of OD and incapacity for work were determined for the total number of ODs and six frequently occurring ODs. Trends in incidence were estimated using a multilevel negative binomial regression model.

Result In total, 54 per 100,000 workers in elementary occupations, machine operating and assembly jobs, as well as managerial and intellectual jobs during 2016 had an OD diagnosed and reported by an OP, from which 98 per 100,000 were for lower SEP, and 36 per 100,000 for higher SEP. Among the lower SEP, musculoskeletal disorders (37%) and noise-induced hearing loss (NIHL) (32%) comprised two-thirds of the OD diagnoses. Among the higher SEP, distress/burnout comprised 60% of the OD diagnoses, with an increasing trend (6%; 95% CI: 3%-8%). Incapacity for work due to work-related low back disorders (69% vs 9%) and shoulder-, arm- and wrist disorders (89% vs 47%) differed significantly between workers in lower compared to higher SEP.

Discussion Occupational diseases occur at a 2.7 higher incidence rate for workers in lower SEP compared with higher SEP. Incapacity for work due to work-related musculoskeletal disorders are higher for workers in lower SEP compared with higher SEP suggesting fewer opportunities to modify work tasks and working circumstances for lower SEP. Psychosocial risk factors constitute the greatest problem for workers in higher SEP, resulting in distress/burnout, accompanied by incapacity for work.

One of the current gaps in the prevention of work-related diseases (WRDs) is the missing link between the assessment of occupational hazards introduced at the workplace, clinical alerts, epidemiological studies and policy actions. Alert systems aim to bridge this gap, by collecting information on diseases and exposures to raise alerts to different stakeholders and trigger timely prevention.

This project started with a review of international alert systems to identify good practices and learning about prerequisites, drivers and obstacles to implement alert and sentinel systems. Next, the findings led to the implementation of an integrated approach consisting of alert systems on three levels in the Belgian context:

1. Signal detection and assessment: suspected clinical cases of new WRDs (new exposure–disease combinations) can be reported through an online platform called ‘SIGNAAL’. Each reported case is followed by an extensive assessment of exposure- and work-relatedness performed by clinical experts. Since the start, 22 cases have been reported to the platform.

2. Signal strengthening though a network of occupational health physicians. This sentinel approach has been introduced though the PROBE system, in which 47 occupational physicians participated. During the periodic health examinations of workers, the physicians filled in a web survey regarding occupational exposure of a random sample of workers to 22 selected hazardous chemicals during the last working week. Results of the first study showed that 47% of workers were exposed to at least one chemical product from the list, with diesel exhaust being the most frequently reported substance (n=91; 14% of workers).

3. Alerts to public health authorities are mainly communicated though collaboration with Federal Public Services and Federal Agency for Occupational Risks. These agencies provide support in the maintenance of systems and in turn, data from the systems is used as input for potential preventive strategies on company and societal level.

One of the current gaps in the prevention of work-related diseases (WRDs) is the missing link between the assessment of occupational hazards introduced at the workplace, clinical alerts, epidemiological studies and policy actions. Alert systems aim to bridge this gap, by collecting information on diseases and exposures to raise alerts to different stakeholders and trigger timely prevention.

This project started with a review of international alert systems to identify good practices and learning about prerequisites, drivers and obstacles to implement alert and sentinel systems. Next, the findings led to the implementation of an integrated approach consisting of alert systems on three levels in the Belgian context:

1. Signal detection and assessment: suspected clinical cases of new WRDs (new exposure–disease combinations) can be reported through an online platform called ‘SIGNAAL’. Each reported case is followed by an extensive assessment of exposure- and work-relatedness performed by clinical experts. Since the start, 22 cases have been reported to the platform.

2. Signal strengthening though a network of occupational health physicians. This sentinel approach has been introduced though the PROBE system, in which 47 occupational physicians participated. During the periodic health examinations of workers, the physicians filled in a web survey regarding occupational exposure of a random sample of workers to 22 selected hazardous chemicals during the last working week. Results of the first study showed that 47% of workers were exposed to at least one chemical product from the list, with diesel exhaust being the most frequently reported substance (n=91; 14% of workers).

3. Alerts to public health authorities are mainly communicated though collaboration with Federal Public Services and Federal Agency for Occupational Risks. These agencies provide support in the maintenance of systems and in turn, data from the systems is used as input for potential preventive strategies on company and societal level.

One of the current gaps in the prevention of work-related diseases (WRDs) is the missing link between the assessment of occupational hazards introduced at the workplace, clinical alerts, epidemiological studies and policy actions. Alert systems aim to bridge this gap, by collecting information on diseases and exposures to raise alerts to different stakeholders and trigger timely prevention.

This project started with a review of international alert systems to identify good practices and learning about prerequisites, drivers and obstacles to implement alert and sentinel systems. Next, the findings led to the implementation of an integrated approach consisting of alert systems on three levels in the Belgian context:

1. Signal detection and assessment: suspected clinical cases of new WRDs (new exposure–disease combinations) can be reported through an online platform called ‘SIGNAAL’. Each reported case is followed by an extensive assessment of exposure- and work-relatedness performed by clinical experts. Since the start, 22 cases have been reported to the platform.

2. Signal strengthening though a network of occupational health physicians. This sentinel approach has been introduced though the PROBE system, in which 47 occupational physicians participated. During the periodic health examinations of workers, the physicians filled in a web survey regarding occupational exposure of a random sample of workers to 22 selected hazardous chemicals during the last working week. Results of the first study showed that 47% of workers were exposed to at least one chemical product from the list, with diesel exhaust being the most frequently reported substance (n=91; 14% of workers).

3. Alerts to public health authorities are mainly communicated though collaboration with Federal Public Services and Federal Agency for Occupational Risks. These agencies provide support in the maintenance of systems and in turn, data from the systems is used as input for potential preventive strategies on company and societal level.