Conclusions Our study shows that there are differences in exposure to carcinogenic agents among shift and non-shift workers, and so there is a need for prevention programs in order to reduce these discrepancies.

O4A.5 NIGHT SHIFT WORK IS ASSOCIATED WITH ABNORMAL LIVER FUNCTION

1Lap Ah Tse*, 2Feng Wang, 3Luzhuo Zhang, 4Zhimin Li. 1The Chinese University of Hong Kong, Shatin, Hong Kong; 2Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China

Introduction Many hospital workers suffer from sleep disturbance due to shift work. The best way to mitigate the problem would be reducing night shift. However, that is commonly impossible in reality. Thus, we aimed to examine the factors associated with sleep disturbance and suggest better-rotating schedules for hospital workers.

Methods We used sleep questionnaires asking sleep disturbance including sleep onset and maintenance problems for measuring health outcomes. Also, we obtained a data schedule of the workers for assessing exposure. We examined the effect of the pattern of shift schedule and amount of night shifts on sleep disturbance.

Results A total of 590 workers participated in this study. Female (95%) 3-rotating shift (92%) workers dominated. For workshift pattern, two consecutive night shifts increased the risk of sleep maintenance problem significantly. For the amount of night shift, two or more night shifts per week increased the risk of sleep onset problem significantly.

Conclusion Our results suggest that avoiding consecutive night shifts and restricting night shift to one per week would be helpful to prevent sleep disturbance in hospital workers.

O4A.6 OCCUPATIONAL EXPOSURE TO EXTREMELY LOW FREQUENCY MAGNETIC FIELDS AND MELATONIN IN MALE ROTATING SHIFT WORKERS

1Michelle C Turner*, 2Esther Gracia-Lavedan, 3Gemma Castaño-Vinyals, 4Debra J Skene, 5Benita Middleton, 6Elisabeth Cardis, 7Manolis Kogevinas. 1Michelle C Turner*, 2Esther Gracia-Lavedan, 3Gemma Castaño-Vinyals. 5Benita Middleton, 6Elisabeth Cardis, 7Manolis Kogevinas. 1Department of Statistics, Dongguk University, Seoul, South Korea; 2Department of Statistics, Dongguk University, Seoul, South Korea; 3Ewha Medical Research Institute, Ewha Womans University School of Medicine, Seoul, South Korea; 4Department of Occupational and Environmental Medicine, Ewha Womans University Mokdong Hospital, Seoul, South Korea

Introduction Previous studies have demonstrated that exposure to extremely low frequency magnetic fields (ELF-MF) may affect circadian rhythms and sleep. In a recent study, we found a positive association between ELF-MF exposure and the melatonin metabolite, 6-sulfatoxymelatonin (aMT6s), in workers in South Korea. This study aimed to further explore the relationship between ELF-MF and melatonin production in male rotating shift workers.

Methods A total of 50 male shift workers rotating in a 3 week night, 3 week evening, and 3 week morning schedule were recruited at a local car manufacturing facility. Personal full-shift measurements of ELF-MF exposure were performed (EMDEX II, 40–800 Hz) and urine samples from all voids over 24 hour collected on two working days (end of 3 week night and end of 3 week morning shifts). Urania concentrations of 6-sulfatoxymelatonin (aMT6s), the main melatonin metabolite, were measured in all samples (creatinine corrected), with the mesor (24 hour mean) derived based on cosinor models.

Results Arithmetic mean (AM (SD)) and geometric mean (GM (GSD)) ELF-MF levels were 0.05 (0.06) μT and 0.03 (0.02) μT, respectively. Peak production of aMT6s occurred 9 hours later in night compared with morning shifts, though with a similar mesor indicating adaptation. The adjusted mesor varied somewhat by age group and other personal characteristics, and was somewhat lower among those with higher AM and GM ELF-MF levels (i.e. >50 th or 75th percentile), with differences ranging from 0.94–1.38 ng/mg creatinine/hour in the morning to 0.96–4.33 in the night shift observed, with some differences significant.

Conclusion Overall, small differences in mean aMT6s levels were observed according to ELF-MF. Workers during the night shift adapted, showing a delay in the peak time of aMT6s production compared to the day shift.