for respiratory diseases. However, few population-based studies have been conducted to assess the alterations of circulating pulmonary proteins due to long-term PM$_{2.5}$ exposure.

Methods We designed a two-stage study. At the first stage, we enrolled 558 coke plant workers with a wide range of PM$_{2.5}$ exposure levels as the exposed group and 210 controls in China. Pulmonary injury was measured by lung function and serum Clara cell protein (CC16), surfactant protein A (SP-A), and surfactant protein D (SP-D). Linear regression models were used to test the associations between PM$_{2.5}$, pulmonary injury markers, and lung function. At the second stage, significant initial findings were validated by an independent diesel engine exhaust (DEE) cohort with 50 DEE exposed workers and 50 controls.

Results Serum CC16 decreased in a dose-response manner in association with both external and internal PM$_{2.5}$ exposures in two cohorts. In the first stage, serum CC16 levels decreased with increasing duration of occupational PM$_{2.5}$ exposure history. An IQR (122.0 μg/m3) increase in PM$_{2.5}$ was associated with a 5.76% decrease in serum CC16, whereas an IQR (1.06 μmol/mol creatinine) increase in urinary 1-OHP concentration was associated with a 3.56% decrease in serum CC16 in the COE cohort. In the validation stage, the concentration of serum CC16 in PM$_{2.5}$ exposed group was 22.42% lower than that of the control and an IQR (1.24 μmol/mol creatinine) increase in urinary 1-OHP concentration was associated with a 12.24% decrease in serum CC16 in DEE cohort.

Conclusions Reduction of serum CC16 may be a sensitive marker for pulmonary damage in populations with high PM$_{2.5}$ exposure.

Mini-Symposium 2: OMEGA-NET

O3D.1 OMEGA-NET INVENTORY OF OCCUPATIONAL COHORTS

1Michelle C Turner*, 1Vivi Schlünssen, 1Gemma Castano-Vinyals, 4Lode Godderis, 2Malcolm Sim, 3Ingrid Swedin-Nielsen, 3Manolis Kogevinas, 4Barcelona Institute for Global Health (O3D.1); Barcelona, Spain; 4Aarhus University, Aarhus, Denmark; 5National Research Center for the Working Environment, Copenhagen, Denmark; 3University of Leuven, Centre for Environment and Health, Leuven, Belgium; 2Monash University, Melbourne, Australia; 3National Institute of Occupational Health (STAMI), Oslo, Norway

Europe currently has some of the most valuable occupational, industrial, and population cohorts worldwide. However, in recent years there has been limited coordination and promotion of European health research on occupational and employment. OMEGA-NET is a COST Action (2017–2021) funded by the EU, currently involving researchers from 29 European countries and an increasing number of near neighbour and international partner countries. The overarching concept is to create a network to advance i) collaboration of existing cohorts, ii) coordination and harmonisation of exposure assessment, and iii) facilitation of an integrated research strategy for occupational health in Europe. As part of this work, OMEGA-NET is currently building an online searchable ‘Inventory of Occupational Cohorts’. We will inventory epidemiological, occupational, population, and registry-based cohorts with data on occupational exposures and health effects. The inventory will include cohorts with data that is potentially accessible; that have collected information on occupation and/or industry or at least one occupational exposure; and have at least one follow-up point with health outcomes. Cohorts will be identified through systematic searches and personal records. An initial search identified more than sixty cohorts including more than 40 million persons with information on occupation. Researchers responsible for the cohorts will be contacted and asked to complete a web-based questionnaire. An online searchable ‘Inventory of Occupational Cohorts’ database will be developed to make the information publicly accessible and to facilitate researcher and policy-maker access to information from past and ongoing cohort studies. Users will be able to search for specific exposures and outcomes and extract basic information on the methodology of the cohorts. The OMEGA-NET Inventory of Occupational Cohorts will be the most comprehensive inventory of occupational cohorts worldwide and is expected to enhance scientific output from individual studies, and facilitate pooled studies, data sharing, and more efficient use of existing cohorts.

O3D.2 45 YEARS OF FOLLOW-UP FOR CANCER FOR JOBS AND OCCUPATIONAL EXPOSURES IN 15 MILLIONS IN FIVE NORDIC COUNTRIES – NOCCA

1Johnni Hansen*, 3Jan Ivar Martinsen, 2Elisabette Wederpaa, 2Kristina Kjaerheim, 3Pål Sparen, 3Laufey Tryggvadottir, 7Elsbeth Lyne, 7Eero Pukkala. 1Danish Cancer Society Research Center, Copenhagen, Denmark; 2Norwegian Cancer Registry, Oslo, Sweden; 3Karolinska Institute, Stockholm, Sweden; 4Teslands Cancer Registry, Reykjavik, Iceland; 5Copenhagen University, Copenhagen, Denmark; 6Finish Cancer Registry, Helsinki, Finland

Introduction A majority of established human carcinogens have been discovered in the occupational setting. For most cancers, including even frequent cancers like colorectal, prostate and breast, however, only a minor fraction of the overall causes has been identified so far. Therefore, it is obvious than even more carcinogens can be discovered through studies of occupation and cancer. This can be facilitated by the use of big high quality data.

Methods Our study covers 15 million working-aged persons who participated in population censuses between 1960 and 1990 in Denmark, Finland, Iceland, Norway and Sweden. These persons have been followed-up for cancer and divided into 70 cancer categories. Further, country and calendar time specific job exposure matrices (JEM) are developed for 30 documented and potential carcinogens, including e.g. asbestos, formaldehyde, wood dust, quartz and several specific metals and organic solvents.

Results In total 2.8 million incident cancer cases are diagnosed in these people during the follow-up. Even for all cancers combined, there is a wide statistically significant variation among men from a relative risk (RR) of 0.79 in domestic assistants to 1.48 in waiters. The occupations with the highest RR also includes workers producing beverage and tobacco, seamen and chimney sweeps. Among women, the overall RR varied from 0.58 in seafarers to 1.27 in tobacco workers. Low RR were found for farmers, gardeners and forestry workers in both genders. We have also estimated RRs after exposure to e.g. various metals, solvents, formaldehyde and wood dust. Additional examples from the over 50 papers published so far based on this comprehensive on-going cohort will be presented.
Abstracts

Conclusions The present study shows that the risk of cancer is highly dependent on occupation and specific occupational exposures.

O3D.3 MEDICATION AS PROXY OF WORK-RELATED HEALTH PROBLEMS
Lode Godderis1; Lieve Vandersmissen; Martijn Schouteden. XU Leuven/IDEWE, Leuven, Belgium; IDEWE, Heverlee, Belgium
10.1136/OEM-2019-EPI.74

Introduction In order to investigate the impact of work on health, we hypothesize that medication consumption registered in medical files of workers could serve as a proxy for work-related health problems. In this study, we describe variations in prevalence of specific medication groups between sectors, adjusting for age and gender. In addition, we investigated whether a change in job/sector can have an impact on medication use.

Method Logistic regression analysis is being performed to investigate the effect of occupational sector on the prevalence of specific medication groups, adjusted for year, age and gender. For this, an occupational surveillance dataset of 686434 workers collected between 2011 and 2017 was used. Additionally, regarding the impact on job changes on medication use, analyses are currently being performed by comparing prevalence of specific medication groups in 2011 with 2017 for those employees who changed job during this time period.

Results and discussion In 2011 30.6% male and 49.8% female workers used medication. These figures rose to 43.1% and 67.3% respectively in 2017. The use of medication increased with age: in 2017 38.2% for workers<25 year, 43.6% for 25–34 year old employees, 48.7% between 35–44 year, 61.6% between 45–54 year and 74.1% for older workers>=55 year. Big differences were observed between sectors. Medication use was highest in health care (67.1% in 2017), government and public administration (65.4%) followed by other sectors (61.7%).

Conclusion Significant differences in workers’ medical consumption were observed between sectors. This information is now being used for the implementation of a sector-oriented health surveillance program.

O3D.5 NATIONAL POLICIES AND SOCIAL INEQUALITIES IN EXIT PATHS FROM WORKING LIFE IN SWEDEN
Kerstin Nilsson, Roland Kadekar, Per-Olof Östergren, Lars Rylander, Maria Albin. 1Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden; 2Department of Work Science, Swedish University of Agricultural Sciences, Alnarp, Sweden; 3Department of Sociology and Work Science, University of Gothenburg, Gothenburg, Sweden; 4Division of Social Medicine and Global Health, Lund University, Lund, Sweden; 5Unit of Occupational Medicine, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
10.1136/OEM-2019-EPI.76

We investigated the impact on work life exits from reduced access to disability pension (2006), and financial incentives to extend working life.

Method and material We used labour statistics, social insurance, and income data, for all employees in Sweden, to compare occupational groups (SSYK, based on ISCO-88), and blue and white collar workers, with regard to i) lost years in working life due to death, disability pension and long-term sick-leave preceding disability pension 2007–2010, ii) granted disability pensions 2007–2010, and iii) premature age pension in 2004 and 2011.

Results Years lost in working life were similar for men and women in the same 1-digit SSYK occupational group, somewhat higher for those born outside Sweden, but showed a clear gradient from white to blue collar occupations, e.g. on average 0.39 ys versus 2.40 ys lost for Legislators/senior officials/managers and in Elementary occupations, respectively (women born in Sweden).

In 2006 the prevalence of disability pension in the age group 50–64 was 3.61% among women and 2.49% among men, with 10/10 of the highest prevalence occupations (4-digit SSYK code) in men, and 9/10 in women, being blue collar ones. Approved applications decreased 2006–2011 by 74.4% in women, and 64.3% in men; for mental disorders (ICD-10-