THE GLOBALLY HARMONISED SYSTEM CHEMICALS
APPLICATION IN ORDER TO STABILISH HEALTH
AND ENVIRONMENTAL RISKS (SUCCESSFUL INDUSTRY
CASE)

AL Fajardo Montiel, HU Ramirez Sánchez, AR Meulenett Peña. Universidad de Guadalajara, Guadalajara Jalisco México

10.1136/oemed-2018-ICOHabstracts.278

Introduction The GHS (The Globally Harmonised System of Classification and Labelling of Chemicals) is a specially system for standardising and harmonising the classification and labelling of chemicals at the industry. The main objective is to define health, physical and environmental hazards of chemicals. Due there is no international implementation procedure for the GHS, existing systems should develop transition strategies in order to fulfil the GHS requirements, and be sure to fulfil new ISO 14001:2015 requirements.

Methods According with the Mexican standard NMX-R-019-SCFI-2011, the classification of chemicals or mixtures incorporates this three steps: Identifying relevant data on the hazards of the substance or mixture, Analysis to identify hazards associated with the substance or mixture and stablish the corresponding hazard communication.

The label system is designed including: Warning words, danger indication, precautionary statements and pictograms, supplier identification and Material safety data sheet information.

After the organisation get this documents, starts the basic elements that include: aquatic toxicity, potential or actual bioaccumulation; degradation (biotic or abiotic) of organic chemicals; and chronic aquatic toxicity. The health hazards is determinant according ONU Purple book (part III).

The final stage include to design a specific procedure at the industry in order to determine health and environmental risk with a complete methodology to fulfil ISO 14001:2015 standard.

Results One of the main issues is to be sure that the Material safety data sheet provide complete information on a chemical, transportation and emergency actions, with the complete information according ISO 14001:2015 standard the industry get an specific procedure to integrate GHS requirements with an update process, and then be ready to implement this at Mexico Region.

Conclusion This is the first time that an international standard with a local legislation is integrated and develop a methodology that is effective at different buildings in the same company.

USE OF A RISK ASSESSMENT TO ASSIST FARMERS
WITH OSH MANAGEMENT IN IRELAND

1) J Mcnamara*, 2) P Griffin, 3) J Phelan, 3) J Kinsella. 1Teagasc- Agriculture and Food Development Authority, Kildalton, Co. Kilkenny, Ireland; 2Health and Safety Authority, Dublin1, Ireland; 3School of Agriculture, University College Dublin, Dublin

10.1136/oemed-2018-ICOHabstracts.280

Introduction In Ireland, persons at work, including self-employed farmers, are subject to the regulatory framework of the Safety, Health and Welfare at Work Act, 2005. This legislation requires the person in control of a workplace to prepare and implement a written workplace specific OSH management programme, referred to as a 'Safety Statement'. The legislation permits workplaces employing three or less workers to complete a Risk Assessment (RA) prepared under a statutory Code of Practice (COP) as an alternative to completing a Safety Statement. Following enactment of the 2005 legislation, the Irish Health and Safety Authority and Teagasc – the Irish Agriculture and Food Development Authority formed an alliance to: prepare the COP and RA; assist farmers to implement the RA, with or without half-day training, and to evaluate RA utility. This paper outlines some findings of evaluations related to RA completion and control implementation.

Methods RA documents from farmers (n=335, with training; n=135, without training) were obtained and controls specified for action assessed. Farm audits (n=94) were undertaken for farms where a RA document was obtained to assess implementation of RA controls specified and farm OSH standards. Data was analysed using SPSS.

Results The evaluation found that farmers specified, on average, 3 controls (2.94% of controls in RA) for implementation of these drugs are used may be exposed to these agents in the workplace. In Croatia there are no legal regulatory acts and there are no national guidelines to define how to protect healthcare workers who are at risk of exposure to cytotoxic drugs.

Aim of this case report is to show good practice of health protection of healthcare workers in University Hospital Centre (UHC) Zagreb.

Methods Training course was organised by the UHC for all healthcare workers who might be exposed to cancer chemotherapy drugs. Health assessments of all those workers were provided by occupational health physician who have contracted with the employer and provide the health surveillance of workers who are in the risk for health and safety.

Result There were 5 training courses during the period of two years (2015–2017). Out of 250 workers, 200 participated in the training course. All workers who were in the risk of exposure to cytotoxic drugs have to visit occupational health institute for health assessment (prior to exposure and at regular intervals thereafter). All workers, who were examined for that workplace, had fitness for work. Workers were no suffering ill-health due to possible exposure.

Conclusion UHC organised the training course to raise awareness about the hazardous drugs in hospital and improve knowledge and safety at work of healthcare workers. The obligation of the employer is to assess the hazards and dangerous at the workplace and manage the risk of exposure to carcinogens or mutagens. This process shall be renewed regularly.

EDUCATION ABOUT HEALTH PROTECTION OF
HEALTHCARE WORKERS RELATED TO HAZARDOUS
DRUGS IN CROATIAN HOSPITALS

1) Božana Knzavc, 2) Vanja Kemer. 1University Hospital Centre Zagreb, Zagreb, Croatia; 2Health Institution for Occupational Health Bonifarm, Zagreb, Croatia

10.1136/oemed-2018-ICOHabstracts.279

Introduction Hazardous drugs have one or more following characteristics: carcinogenicity, teratogenicity, reproductive toxicity, organ toxicity at law doses and genotoxicity. Health care workers who prepare or administer the hazardous drugs (e.g. cancer chemotherapy drugs) or who work in places where...