The immunological effects of asbestos exposure on various lymphocytes such as the regulatory T cell (Treg), responder CD4+ T helper cell (Tresp), CD8+ cytotoxic T lymphocytes (CTL) and natural killer (NK) cells were investigated. Results show that asbestos exposure impairs anti-tumour immunity through enhancement of regulatory T cell function and volume, reduction of CXCR3 chemokine receptor in responder CD4+ T helper cells, and impairment of the killing activities of CD8+ cytotoxic T lymphocytes (CTL) and NK cells. These findings were used to explore biological markers associated with asbestos exposure and asbestos-induced cancers, and suggested the usefulness of serum/plasma IL-10 and TGF-β, surface CXCR3 expression in Tresp, the secreting potential of IFN-γ in Tresp, intracellular perforin level in CTL, and surface expression NKp46 in NK cells. Although other unexplored cytokines in serum/plasma and molecules in these immunological cells, including Th17, should be investigated by experimental procedures in addition to a comprehensive analysis of screening methods, biomarkers based on immunological alterations may be helpful in clinical situations to screen the high-risk population exposed to asbestos and susceptible to asbestos-related cancers such as mesothelioma.

Introduction

Many studies have shown that nickel and its alloys can be potential irritants and sensitizers among workers engaged in ferronickel alloy production, and provoke occupational contact dermatitis.

Objective

To assess the prevalence of contact dermatitis focusing on allergic contact dermatitis in workers exposed to nickel while producing ferronickel alloys.

Methods

A cross-sectional study included 103 male workers (mean age=49.1±10.1) employed in nickel. Their findings were compared with a control group of 37 male office workers (mean age=46.7±10.6), employed in nickel. The tumorigenicity of asbestos, which is thought to cause mesothelioma and lung cancer. However, in contrast, its effect on anti-tumour immunity remains unclear. In ICOH Congress 2015, we have reported the enhanced decrease in% perforin+ cells of stimulated CD8+ cells of the patients with malignant