BONE EFFECT UNDER CAUSED BY CO-EXPOSURE TO LOW LEVEL URINE ARSENIC CONCENTRATION AND OBSTRICTIVE PULMONARY DISEASE AMONG U.S. WORKERS

1,2 Ed Amster*, 1 David Christiani. 1University of Haifa, School of Public Health, Department of Occupational Health, Israel; 2Harvard University, T.H. Chan School of Public Health, USA
10.1136/oemed-2018-ICOHabstracts.1439

Introduction Arsenic (As) is a known carcinogen commonly found in drinking water. An emerging body of evidence suggests that exposure to inorganic arsenic may be associated with non-malignant respiratory disease. The aim of this study was to determine whether there is an association between As exposure at levels seen among workers in the United States and prevalence of asthma, emphysema, chronic bronchitis, and respiratory symptoms.

Methods Urinary As was collected from 5365 participants from the combined 2003–2006 National Health and Nutrition Examination Survey (NHANES) cohorts. Two methods to adjust for organic As component were incorporated into the statistical model. Linear and logistic regression models compared urinary As adjusted for organic As with diagnoses of obstructive pulmonary disease and respiratory symptoms.

Results Geometric mean concentration of urinary As were not significantly different between participants with and those without asthma, chronic bronchitis, and emphysema. Odds of having asthma was 0.71 for participants with the highest quintile of urinary As (≥17.23 µg/dl) when compared to the lowest quintile (<3.52 µg/dl). A significant association was found between increasing urinary As concentration and decreasing age, male gender, and non-white race.

Conclusion A significant association between urinary As and obstructive pulmonary disease and symptoms was not demonstrated in the U.S. working population.

BONE METABOLISM ABNORMALITY AND RENAL DYSFUNCTION IN CADMIUM EXPOSED FARMER FROM THAILAND

1 K Nambunmee*, 2 M Nishio, 3 W Swaddiwudhipong, 4 W Ruangyuttikarn. 1University of Haifa, School of Public Health, Department of Occupational Health, Israel; 2Department of Public Health, Kanazawa Medical University, Ishikawa, Japan; 3Department of Community and Social Medicine, Mae Sot General Hospital, Tak Province, Thailand; 4Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Thailand
10.1136/oemed-2018-ICOHabstracts.1440

Introduction Paddy fields in Mae Sot, Tak province of Thailand are polluted with cadmium (Cd) over safe level. Farmers exposed Cd from contaminated rice consumption and the high prevalence of kidney dysfunction was shown in the exposed population. Bone fracture is another Cd related pathology which shown in elderly with high exposure level. The identification of high risk individuals will be advantageous to provide suitable health promotion and to prevent severe pathology. This study was done to compare bone fracture risk between glomerular dysfunction, proximal tubular dysfunction and Calcium (Ca) handling abnormality.

Methods Serum osteocalcin and cross-linked N-telopeptide of type I collagen to detect bone metabolism abnormalities, whereas glomerular filtration rate, serum cystatin C, urinary β2-microglobulin (β2-MG) and fractional excretion of calcium...
(FECa) were used to indicate renal dysfunction. Urinary Cd was used as exposure marker.

Results We found that high FECa was related to high bone fracture risk in both genders. Proximal tubular dysfunction and glomerular dysfunction did not relate to bone fracture risk.

Conclusion Abnormal Cd handling was a key risk factor for bone fracture in Cd exposed people. Men was at risk of bone fracture risk as similar as women. FECa was a specific indicator of Ca wasting and its determination cost was cheaper compare to β2-MG and serum cystatin C. We recommended to use FECa to monitor abnormal Ca metabolism and individual who showed high FECa should have a special health promotion to reduce bone fracture risk. Reduced renal toxicant exposure, and Ca supplementation were suggested as a health promotion for this Cd exposed farmer.

1654 GENETICS AND EPIGENETICS IN TOXICOLOGY OF METALS

1Karin Broberg, 2Roberto G Lucchini. 1Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; 2Occupational Medicine, University of Brescia, Italy

Aim of special session To provide current knowledge on genetic and epigenetic effect of metal exposure in different population.

1654a EPIGENETIC ALTERATIONS AS AN UNDERLYING MECHANISM OF THE TOXICITY OF METALS

1,2Karin Broberg, 1Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; 2Department of Laboratory Medicine, Lund University, Lund, Sweden

Introduction Toxic metals are present at many workplaces as well as in food and drinking water, causing life-long daily exposure. In the last decade, epigenetic alterations have gained attention as underlying mechanisms of the adverse health effects observed in relation to exposure to metals. Epigenetic marks, broadly defined as dynamic changes to the genome other than changes in the DNA sequence itself, can lead to persistent changes in the regulation of gene expression. Epigenetic mechanisms have key functions in regulating cellular homeostasis, and lineage-specific gene expression, and perturbations may have long-lasting influence on future health, including risk of cancer.

Methods Epigenetic changes in candidate genes and in the epigenome (pyrosequencing, MS-HRM, target-enrichment next-generation sequencing, RNA sequencing, histone modifications, and microRNA) have been measured in different tissues in relation to exposure to toxic metals (arsenic, cadmium, lead, welding particles) in samples collected from humans occupationally and/or environmentally exposed to metals.

Result We have shown that exposure to particularly arsenic, but also cadmium and metal-containing particles, are significantly associated with changes of epigenetic marks, and some of these marks are linked to carcinogenesis, cardiovascular and immune function. The epigenetic changes seem to persist over several years and for arsenic and cadmium sex differences were found.

Discussion Research during the last decade have shown that metals common at workplaces and in the general environment are associated with epigenetic alterations that in turn may have long-lasting effects on the gene regulation and risk of disease. Experimental and animal studies support that epigenetic perturbations are underlying mechanism for metal toxicity. Similar to what has been shown for smoking-related epigenetic marks, metal-related epigenetic marks may be promising exposure and effect biomarkers.

1654b MANGANESE TOXICITY ACROSS THE LIFESPAN FROM PRENATAL EXPOSURE TO THE OLD AGE

1,2Roberto G Lucchini, 1Occupational Medicine, University of Brescia, Italy; 2Occupational Medicine, Icahn School of Medicine at Mount Sinai, New York, USA

Introduction Manganese exposure causes neurotoxicity from prenatal life to the old age. An extended body of literature is now available on:

i. different exposure sources and routes of absorption;

ii. mechanistic aspects provided also by imaging assessment;

iii. dose–response relationship from epidemiological and animal studies;

iv. gender differences;

v. genetic predisposition.

Methods New evidence was reviewed from the scientific literature and the studies presented during the world conference held in 2016 at the Icahn School of Medicine at Mount Sinai, New York, USA.

Results Current manganese research offers a wide spectrum of observations within a continuum of exposure from early life to old age, with new evidence of neurotoxicity at low exposure levels in occupational settings and operations including welding. Gender differences are consistently shown by human studies and toxicity vs beneficial effects are reported to varying as a function of the exposure windows. Brain imaging studies through structural and functional MRI provide new information about differences and similarities between occupational, environmental exposure and parkinsonian conditions. Genetic studies focused on genes regulating specific transporters, such as SLC30A10, offer new prospective in understanding the regulation of metabolic pathway and toxicodynamic properties of manganese.

Conclusion Manganese exposure is increasingly common through a variety of industrial and agricultural products. Current research offers consistent evidence of potential links from neurodevelopment to neurodegeneration. The enhanced vulnerability of specific exposure windows and the cumulative mechanism of toxicity require further studies to identify the critical windows of susceptibility and the exposure levels suitable to protect the brain throughout the lifetime exposure. Understanding these aspects is of utmost relevance in view of the potential role of manganese as determinant of both neurodevelopmental disorders and neurodegenerative diseases.