TIME SEQUENCE OF OXIDATIVE STRESS IN NEURODEGENERATIVE BRAIN AFTER LONG-TERM LEAD EXPOSURE IN RATS

1Chang Feng, 2Yanyan Gao, 1,2Yanshu Li, 1Yankun Zhou, 1Shuqian Zhang, 1Gaochun Zhu, 1Guhua Du, 1Ying Chen, 2Huan Jiao, 1Li Yan, 1Shangao Feng, 1Guangjin Fan1.
1Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, China; 2Institute of Materia Medica of Jiangxi province, Nanchang 330029, China; 1Department of Anatomy, School of Medicine, Nanchang University, Nanchang 330006, China

10.1136/oemed-2018-ICOHabstracts.1435

Introduction A large number of studies have shown that the developmental neurotoxicity induced by lead is related to oxidative injury, meanwhile, oxidative stress is among the most common mechanisms of neurodegeneration. However, few studies have explored the role of oxidative stress in age-related cognitive impairment caused by prolonged lead exposure and oxidative stress.

Methods In the present study, rats were exposed to low-level lead from the embryonic stage to old age. Dynamic changes in neurodegeneration, endoplasmic reticulum (ER) stress, and oxidative stress in brains during postnatal weeks 3, 41 and 70 (PNW3, PNW41 and PNW70, respectively) were investigated.

Results Lead exposure resulted in neurodegeneration in PNW41 and PNW70 rats based on magnetic resonance imaging (MRI) scans and thionine stain analysis. Amyloid precursor protein (APP) and tau mRNA expression in PNW41 and PNW70 brains increased in a time- and dose-dependent manner. APP and Tau protein levels significantly increased with lead exposure at PNW3 and PNW70. Mechanistically, the expression of the ER stress protein glucose-regulated protein 78 (GRP78) was higher in the presence of lead than in normal controls, which was associated with high levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG) in brain tissues after lead exposure in PNW3 and PNW70, their changes were like as APP and tau protein that were a u- or j-shaped curve with time of lead exposure.

Conclusion Our findings suggest that the neurodegenerative injuries induced by lead exposure may be mediated by ER and oxidative stresses, and there is a critical period for prevention or intervention AD in early life and later life, however middle-aged people at the latent stage of neurodegenerative process should not be ignored.

THE ASSOCIATION OF BLOOD LEAD LEVEL AND RENAL EFFECTS MAY BE MODIFIED BY METALLOTHIONEIN 1A 2A POLYMORPHISMS

1,2,4,5Chen-Cheng Yang, 1Ya-Han Shen, 1,2,3,4Chia-I Lin, 3,5,6Jung-Yi Chuang1,2,3,4,5Chia-I Lin, 3,5,6Hung-Yi Chuang.
1Department of Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; 2Department of Environmental and Occupational Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan; 3Department of Environmental and Occupational Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan; 4Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; 5Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan

10.1136/oemed-2018-ICOHabstracts.1436

Introduction Lead toxicity plays an important role in public health. It causes multiple organs damage, and nephrotoxicity is included. Metallothionein (MT) is a cysteine-rich, low molecular weight protein with function of heavy metal detoxification. However, study about how the MT1A and MT2A single nucleotide polymorphisms (SNPs) influence the lead nephropathy is relatively scarce. Our aim is to investigate the association of blood lead levels and renal biomarkers in chronic lead exposure, and to study whether the association was influenced by MT1A2A SNPs.

Methods Blood samples were collected from 485 participants during their annual health examination after informed consent letters were obtained. The blood lead level, uric acid, urinary uric acid, and urinary N-acetyl-beta-D-glucosaminidase (NAG) were measured and analysed. DNA was extracted and used for real-time PCRgenotyping two MT1A SNPs