SEASONAL CHANGES OF PHYSIOLOGICAL RESPONSES ASSOCIATED WITH HEAT ACCLIMATISATION

1Shota Tabuchi*, 2Shoko Kawanami, 3Daisuke Inoue, 4Shuhei Morizane, 5Jinro Inoue, 6Seidori Horie. 1Department of Health Policy and Management, University of Occupational and Environmental Health, Japan, 2Occupational Health Training Centre, University of Occupational and Environmental Health, Japan.

Introduction Respiratory protective devices are used to protect workers from inhalation of hazardous atmospheres. Beside the aspects related to adequacy of the device in protecting the worker, it is necessary to investigate also the aspects related to the suitability of the device such as ergonomic factors: one of the most common complain of the workers is related to the face thermal sensation perceived as hot. In this study, the effect of a power assisted filtering device incorporating a full face mask on the thermophysiological response of a thermal manikin is investigated. Methods The experimental protocol schedules tests on a standing sweating thermal manikin (Newton) in the climatic chamber, where hot conditions were simulated (air temperature at 34°C, relative humidity at 32%). Two conditions were tested: manikin with the respirator powered on (CR) and manikin without the respirator (CC). Two different levels of metabolic rate were set (1 MET and 3 METs).

Results Results show:
- at 1 MET the manikin is in thermal balance with the external environment with or without respirator.
- at 3 MET, although the thermoregulation system is very stressed (the rectal temperature increases continuously with or without respirator), the effect of the respirator produces a small decrease of the local and global temperatures and also of the amount of sweat generated by active thermoregulation that reaches its maximum value of 30 g/min in CC). The body reaches sensation between ‘hot’ (CC) and ‘warm’ (CR) while the face sensation increases rapidly reaching the value correspondent to ‘very hot’ both for CC and CR.

Discussion At M=1 MET and M=3 MET the effect of the hot environment is weakened by the action of the respirator which allows a continuous heat exchange removing and renovating the air layer around the face without providing an additional thermal load.

1568 SEASONAL CHANGES OF PHYSIOLOGICAL RESPONSES ASSOCIATED WITH HEAT ACCLIMATISATION

841 PEOPLE AT ELEVATED RISK OF DEVELOPING HEAT-RELATED ILLNESS AT WORKPLACE: A CASE-CONTROL STUDY

Abstracts

STUDY RELATED ILLNESS AT WORKPLACE: A CASE-CONTROL STUDY

1Shota Tabuchi*, 2Shoko Kawanami, 3Daisuke Inoue, 4Shuhei Morizane, 5Jinro Inoue, 6Seidori Horie. 1Department of Health Policy and Management, University of Occupational and Environmental Health, Kitakyushu, Japan; 2JFE Steel Corporation, Kawasaki, Japan.

Introduction Primary causes of heat-related illness (HRI) at work are:
- extreme heat and humidity,
- heavy work load,
- continuous exertion and infrequent rest,
- clothes with poor vapor-permeability, and
- personal health condition.

Empirical research has not been performed to investigate the effect of underlying health problems to HRI. Methods A case-control study was performed by asking occupational health staffs to report all HRI cases occurred at their workplaces in 2015 and 2016. One co-worker control of the same gender at the closest in age was also reported for each case. Target population included:
- 102 pairs (n=204) could be compared. Cases showed higher BMI (p=0.046) and visceral circumference (p=0.045).

Results Overall incidence rate of HRI at the examined workplaces was 0.065% (114 cases/176,094 person-year). A total of 102 pairs (n=204) could be compared. Cases showed higher BMI (p=0.046) and visceral circumference (p=0.045). Cases and controls included 12 and 2 persons with IGT, respectively (p=0.005). Multiple logistic regression analysis revealed increase of HbA1c elevated the risk of developing HRI (OR 16.76 [95% CI: 2.44 to 165.5], p=0.0014), whereas LDL-cholesterol showed protective effect (OR 0.97 [0.95–0.99], p<0.001). Conclusion Significantly elevated risk of developing heat-related illness was observed among workers with IGT.