local experts. Diverse local health care workers shared the
challenges faced and successes achieved.

The success of these workshops has inspired the volunteers
to explore the potential for developing a more sustainable
‘academy’ for capability building in basic occupational health.
This model for a social enterprise in low resource countries
through collaborating at international level will be outlined
and discussed.

Introduction This program will create a means for welders
who are already well-supported and protected in the
formal sector, to help welders who are unsupported in the informal
sector. Simply, well-protected welders would be able to donate
small or large funds and new or used equipment to support
the health and safety of unprotected welders.

Methods The primary tool for this program is triage—starting
where we are with what we have. The program would bring
together safety experts to translate knowledge and culture by
listening, asking questions, and advising welders. Then, a form
of triage could be developed for each situation, adapting the
hierarchy of controls to the available resources and the work
culture. In order for this program to succeed, it is essential
that the formality of the organisation function well, but not
interfere with the person-to-person relationships that are the
foundation of this program.

Results The initial program will intentionally start small to
allow flexibility and self-evaluation. Based upon the program’s
experiences, successes, and failures, financial and cultural
demands, and the available resources, triage guidelines would
be created and shared, defining welder protections from mini-
mal to secondary to ideal. Through the program, others could
be trained to make on-site visits, observe existing conditions,
and then make and implement recommendations. A case study
of welders in India will be provided to illustrate this concept.

Conclusion The initial program will intentionally start small to
allow flexibility and self-evaluation. Based upon the program’s
experiences, successes, and failures, financial and cultural
demands, and the available resources, triage guidelines would
be created and shared, defining welder protections from mini-
mal to secondary to ideal. Through the program, others could
be trained to make on-site visits, observe existing conditions,
and then make and implement recommendations. A case study
of welders in India will be provided to illustrate this concept.

Methods The primary tool for this program is triage—starting
where we are with what we have. The program would bring
together safety experts to translate knowledge and culture by
listening, asking questions, and advising welders. Then, a form
of triage could be developed for each situation, adapting the
hierarchy of controls to the available resources and the work
culture. In order for this program to succeed, it is essential
that the formality of the organisation function well, but not
interfere with the person-to-person relationships that are the
foundation of this program.

Results The initial program will intentionally start small to
allow flexibility and self-evaluation. Based upon the program’s
experiences, successes, and failures, financial and cultural
demands, and the available resources, triage guidelines would
be created and shared, defining welder protections from mini-
mal to secondary to ideal. Through the program, others could
be trained to make on-site visits, observe existing conditions,
and then make and implement recommendations. A case study
of welders in India will be provided to illustrate this concept.

Conclusion The initial program will intentionally start small to
allow flexibility and self-evaluation. Based upon the program’s
experiences, successes, and failures, financial and cultural
demands, and the available resources, triage guidelines would
be created and shared, defining welder protections from mini-
mal to secondary to ideal. Through the program, others could
be trained to make on-site visits, observe existing conditions,
and then make and implement recommendations. A case study
of welders in India will be provided to illustrate this concept.

Introduction India produces 200–250 billion clay bricks annually,
also the second largest producer of clay fired bricks, accounting
for more than 10% of global production, in 1 50 000 to
2 00 000 brick kilns. Each brick kiln employs between 250–
300 workers, bringing the total number of workers to approxi-
mately 20 million, which is roughly 4 per cent of a total of
459 million workers in India, of which almost 40% are
women. The Brick Industry in India is characterised by tradi-
tional methods of production technology and seasonal work.

Methods The study was done in Tripura, a state in North
East India to assess the impact of traditional brick manufactur-
ing technology on the health of the workers. A convenient
available sample of 94 workers from 4 brick kilns who have
worked for 3 years or more were taken from the total popu-
lation of 280 (including children) of these kilns. The workers
were interviewed to obtain information on the demography
and personal habit followed by general physical medical
examination, blood test for complete haemogram, random
blood sugar levels and pulmonary function test. The data was
analysed using MS Office Excel 2007 &amp Epi Info 7.2.1.0
version.

Results The average age of workers is 34 years, 27% were
female and 73% male workers. 55% worker are loaders, 29%
moulders and 7% fire-workers, 75% being migrant workers,
49% being overweight, 51% anaemic, 78% have eosinophilia
(younger workers more affected, p value 0.04), 66% have low
back pain.

Conclusion Brick kiln workers are suffering from high morbid-
ity in North east India because of their work. This demands
urgent attention for the health and safety program that should
include regular in-service training emphasising health risk of
brick kiln work, preventive measures, technological interven-
tions etc. Health surveillance of workers would be highly ben-
eficial in achieving better health status.

Introduction Uber ride-sharing is an important sharing econ-
omy challenge. The taxi industry is notoriously dangerous;
even regulated and licensed professional drivers face a homici-
date rate higher than police officers and first responders. Uber
drivers lack special licenses, organised workplaces and other
usual safety structures. However, Uber touts different safety
features, including feedback and ratings. Our study is focused
on understanding the day-to-day work conditions and risks of
Uber drivers.

Method We conducted a critical interpretive study of ride
sharing with Uber drivers, passengers and management, taxi
managers and related policy makers in Ontario, Canada. Data
include interviews and focus groups with 50 drivers, pas-
cengers, taxi and Uber managers and key informants. These were
recorded verbatim, coded and analysed using strategies of cod-
ing, indexing and charting in a framework analysis.

Results Uber drivers face unique risks relating to insurance
coverage, the driver rating system, financial incentives, and

Abstracts

Int WELDERS FOR WELDERS

In Welders for Welders: Hazards of Being an Uber Driver.