Introduction
Beryllium Sensitisation (BeS) is a delayed-type hypersensitivity to beryllium that can develop in susceptible workers exposed to beryllium. In some cases BeS progress to Chronic Beryllium Disease (CBD), which is marked by lymphocytic alveolitis and epitheloid granuloma in the lung parenchyma.

Case description
A 53-year-old non-smoker male with medical history of diabetes mellitus type II and hyperlipidemia presented to his physician with progressive fatigue, weakness, and persistent cough. Three months later he developed dyspnea and a fifteen pounds unintentional weight-loss, prompting his physician to order a chest x-ray showing extensive bilateral interstitial and airspace infiltrates. A pulmonary function test (PFT) with poor test quality showed FEV₁/FVC 72% predicted. A positive IgG test for coccidioides prompted a pulmonary coccidioidomycosis diagnosis. Referred to a pulmonologist and a computed tomography (CT) scan showed residual of old granulomatous disease with multiple calcified small pulmonary nodules and calcified nodes. The patient is with no symptoms related to BeS.

Discussion
In this report, we describe two beryllium golf clubs manufacturing workers who developed BeS and CBD. Beryllium is a metal that is extremely light and strong with high mechanical properties making it suitable for a wide range of industries, including defense, aerospace, nuclear, and electronics. Its lightweight and high strength make it fitting for producing lightweight golf clubs. About 62,000 workers in the U.S. are exposed to beryllium in their workplaces and the risk of developing BeS and/or CBD from occupational beryllium exposure has been recognised for a long time. The risk factors include individual genetic susceptibility and the amount of beryllium exposure. The proportion of workers with BeS that progress to CBD varies widely, ranging from 9% to 100% with CBD developing approximately 10–20 years after first exposure. The importance of protecting workers from beryllium exposure is evident with OSHA’s recent lowering of the permissible exposure limit (PEL) for beryllium to 0.2 mcg/m³ air, averaged over 8 hours in hope to save workers from BeS and CBD.

Conclusion
These two cases underline the critical need to protect workers from harmful exposure to beryllium, using engineering and work practice controls along with personal protective equipment. For BeS and CBD, it is recommended to eliminate or minimise further exposure to beryllium.