Results A 28-year-old female experimental animal trainer was referred for suspected occupational asthma. She worked with rhesus monkeys for about 6 years, as a lab technician in a university neurophysiology lab, performing mainly cognitive testing. She had daily contact with the test animals. The animals were living on sawdust.

The patient experienced respiratory symptoms 2 years after she started working on the experimental lab. She had progressive wheezing and non-productive cough. The respiratory symptoms were accompanied by irritation of eye and nose mucosa, itching papules on forearms with accidental blood splashes or scratch injuries by the monkeys, spontaneously disappearing after 10 min.

Specific IgE test to rhesus monkey was not available; screening to other possible (extra-) professional exposed allergens was negative. Her total serum IgE was not elevated (55 kU/L), blood eosinophil count was elevated (0.3 × 10^9; 6.9%). Spirometry showed supra-normal volumes and normal exhaled nitric oxide (FENO 16.40 ppb at flow of 50 ml/sec). Histamine provocation test showed a mild bronchial hyperactivity (PC20=1.47 mg/ml). Serial peak expiratory flow recordings performed were suggestive of occupational asthma (OA(SYS-score=3.67).

We did not perform skin prick testing with rhesus monkey saliva, blood, urine or hairs (epithelium) because of ethical reasons (possibility of infectious contaminated material). So we decided to perform ex vivo testing (basophil activation test).

Conclusion This is the first case demonstrating the possible role of rhesus monkey exposure in the development of occupational asthma.

Introduction Air pollution in developing countries is causing respiratory disorders and is especially affecting health of persons who are on the road for longer period due to their occupation. Objective of this study was to find the extent of air pollution on road leading to respiratory disorders in two wheeler riders employed in home delivery service.

Methods Permission from concerned authorities and consent from volunteers was taken. Automobile exhaust emission was tested in 100 vehicles, 25 in each group of (above 10 years old) cars, buses, trucks and auto rickshaws. Clinical findings were recorded for 100 two wheeler riders employed in home delivery service and PFT was done for them. PFT results were compared with 100 PFT reports of employees in office work, as control. In control group only PFT reports were checked as employees were not involved.

Results 28% vehicles had higher than standard emission readings. PFT reports of home delivery service employees showed 24 of them had mild/moderate obstructive pathology. 36 persons had symptoms of allergic bronchitis, 31 persons had irritation in nose and throat and 18 persons had irritation in eyes. Control group showed abnormal findings in 8 PFT reports.

Conclusion Creating awareness and educating public about air pollution on road due to automobiles exhaust is necessary. Implementation of strict administrative engineering controls for regular maintenance of vehicles and enforcement of rules, on vehicle emission standards and fuel quality standards will make a great difference in reducing air pollution. Encouraging mass transport, pooling of cars and electric vehicles will reduce air pollution in developing countries. These measures will change the scenario to a pollution free road to produce a positive effect on health of people who are on the road for a longer time due to their occupation and also on health of the general public.

Results A 28-year-old female experimental animal trainer was referred for suspected occupational asthma. She worked with rhesus monkeys for about 6 years, as a lab technician in a university neurophysiology lab, performing mainly cognitive testing. She had daily contact with the test animals. The animals were living on sawdust.

The patient experienced respiratory symptoms 2 years after she started working on the experimental lab. She had progressive wheezing and non-productive cough. The respiratory symptoms were accompanied by irritation of eye and nose mucosa, itching papules on forearms with accidental blood splashes or scratch injuries by the monkeys, spontaneously disappearing after 10 min.

Specific IgE test to rhesus monkey was not available; screening to other possible (extra-) professional exposed allergens was negative. Her total serum IgE was not elevated (55 kU/L), blood eosinophil count was elevated (0.3 × 10^9; 6.9%). Spirometry showed supra-normal volumes and normal exhaled nitric oxide (FENO 16.40 ppb at flow of 50 ml/sec). Histamine provocation test showed a mild bronchial hyperactivity (PC20=1.47 mg/ml). Serial peak expiratory flow recordings performed were suggestive of occupational asthma (OA(SYS-score=3.67).

We did not perform skin prick testing with rhesus monkey saliva, blood, urine or hairs (epithelium) because of ethical reasons (possibility of infectious contaminated material). So we decided to perform ex vivo testing (basophil activation test).

Conclusion This is the first case demonstrating the possible role of rhesus monkey exposure in the development of occupational asthma.