Abstracts

EXPOSURE TO CRYSSTALLINE SILICA AND LUNG FUNCTION IN OUTDOOR ROCK DRILLERS

10.1136/oemed-2018-ICOHabstracts.1259

Introduction A number of tasks in heavy construction generate crystalline silica dust, which is a significant contributor to occupational mortality and morbidity. When a new heavy construction site is established, first excavators come to clear the soil. Thereafter holes are drilled to prepare for blasting. There is a lack of knowledge regarding exposure levels of dust and crystalline silica among rock drillers and blasting workers generated by these work tasks. Exposure to dust and crystalline silica are suggested to cause obstructive and restrictive lung changes.

Methods The study is designed as a two years follow-up of 132 rock drillers and 50 referents (administrative personnel) working in the same construction companies, but without airborne occupational exposure. All subjects were examined with lung function tests and blood was collected during the winter 2015/2016. They will be re-examined in 2017/2018. Pneumoproteins and markers of inflammation are currently being analysed.

Eighty-three rock drillers using different drilling rigs carried air-sampling equipment for the determination of respirable dust and crystalline silica.

Result Preliminary results show: The exposure to dust and crystalline silica in the respirable aerosol fraction ranged from 0.01 to 2.91 mg/m³, and from 0.002 to 0.45 mg/m³, respectively, depending on type of drilling equipment in use. Workers using drill rigs with feed mounted operation panels were most highly exposed.

Compared with the referents at baseline the rock drillers had significantly lower forced vital capacity (FVC)\% predicted (p=0.012) and forced expiratory volume in one second (FEV₁)\% predicted (p=0.001). The decline in FEV₁/FVC (Tiffeneau index) was associated with years of exposure (p=0.017) and smoking (pack years) (p=0.02). The serum concentration of CRP was comparable between the two groups.

Discussion Exposure to crystalline silica during rock drilling may have negative impact on the lung function.

CHEST CT SCANNING IN THE SCREENING, SURVEILLANCE, AND DIAGNOSIS OF OCCUPATIONAL LUNG DISEASES

Rafael E de la Hoz. Icahn School of Medicine at Mount Sinai, New York, NY, USA

10.1136/oemed-2018-ICOHabstracts.1260

Aim of special session Advances with chest CT scanning and CT scan-based lung cancer screening are changing the way diagnosis and screening for occupational lung diseases are conducted. We plan to review existing methodologies and experience-based emerging strategies.

Thomas Kraus, MD, PhD¹, Kurt G. Hering, MD², Narufumi Suganuma, MD, PhD³, and Rafael E. de la Hoz, MD, MPH, MSc⁴

¹RWTH Aachen, Aachen, Germany
²Knappschafsrankenhaus Dortmund, Dortmund, Germany
³Kochi Medical School, Kochi University, Nankoku 783–8505, Japan
⁴Icahn School of Medicine at Mount Sinai, New York, NY, USA

INTERNATIONAL CLASSIFICATION OF HRCT FOR OCCUPATIONAL AND ENVIRONMENTAL RESPIRATORY DISEASES: DESCRIBING NON-MALIGNANT AND MALIGNANT ASBESTOS RELATED DISEASES

Narufumi Suganuma, Kochi Medical School, Kochi University, Nankoku, Japan

10.1136/oemed-2018-ICOHabstracts.1261

ILO Classification of Radiograph of Pneumoconioses (ILO/ICRP) has played an important role in screening and surveillance of pneumoconiosis among dust exposed workers worldwide. As the ILO/ICRP has semi-quantitative scheme, it allows objective and standardised recording of radiographic findings on chest radiographs of workers. The International Classification of HRCT for Occupational and Environmental Respiratory Diseases (ICOERD) have been proposed from International Expert Team consists of researchers from 7 countries, based on the consensus report at the Helsinki Meeting for Asbestos related diseases in 2000. The ICOERD system covers all aspect of Occupational and Environ-mental Respiratory Diseases, starting with six parenchymal find-ings and two pleural abnormalities. Parenchymal findings include well-defined rounded opacities, irregular opacities, inhomogene-ous attenuation, honeycombing, emphysema and large opacities. Irregular opacities include intralobular opacities and interlobular opacities, the former include centrilobular opacities suggestive of inhalation diseases. The ICOERD classifies these parenchymal findings in 4-point-scale, grading 6 lungs zones. Consequently, the final grade for each of the parenchymal findings sums up to 18-point-scale. Pleural abnormalities cover pleural thickening of pari-etal and/or visceral types. Width and extent of pleural thickening is graded in 4-point-scale. As multi-detector CT can be used for screening of non-malignant and malignant diseases, the ICOERD added supplemental coding for mesothelioma, which allows standardised recording of findings suggestive of mesothelioma. CT find-ings of unilateral pleural effusion, nodular pleural thickening, mediastinal pleural thickening, interlobar fissure thickening, diminished lung, contracted hemithorax should be noticed when reviewing CT scans of asbestos-exposed persons.

CHEST CT SCANNING IN THE SCREENING, SURVEILLANCE, AND DIAGNOSIS OF OCCUPATIONAL LUNG DISEASES

Rafael E de la Hoz. Icahn School of Medicine at Mount Sinai, New York, NY, USA

10.1136/oemed-2018-ICOHabstracts.1262

EXPERIENCE WITH THE ICOERD CLASSIFICATION IN WTC LUNG DISEASES

Rafael E de la Hoz. Icahn School of Medicine at Mount Sinai, New York, NY, USA

10.1136/oemed-2018-ICOHabstracts.1263