prevalence was not significantly influenced by work stress. The results support the association between subjective symptoms and EMF exposure in MRI operators. Another conclusion is that the appearance of the specific group of ‘core symptoms’ may be usefully investigated in health surveillance of MRI operators.

PROTECTION OF MRI WORKERS AGAINST MAGNETIC FIELDS ACCORDING TO EU DIRECTIVE AND ICNIRP GUIDELINES

1GM Contessa, 2D Andreuccetti, 3F Falaiapoa, 4L Lopresto, 5P Pinto, 6A Polichetti, 7N Zoppetti, 1Centro Ricerche Casaccia – ENEA, Rome, Italy; 2Istituto di Fisica Applicata ‘Nello Carrara’ (IFAC-CNR), Sezio Fiorentino (Florence), Italy; 3Dipartimento di Medicina, Epidemiologia, Igiene del Lavoro ed Ambientale – INAIL, Rome, Italy; 4Centro Nazionale per la Protezione delle Radiazioni e Fisica Computazionale – ISS, Rome, Italy

Introduction Directive 2013/35/EU lays down minimum health and safety requirements regarding the exposure of workers to electromagnetic fields, including those present in Magnetic Resonance Imaging (MRI) facilities. For what concerns the Static Magnetic Field (SMF), the Directive follows a flexible approach introduced by the 2009 ICNIRP guidelines, which is based on the distinction between sensory and health effects, thus allowing in some circumstances exposed workers to possibly experience unpleasant sensory effects. In addition, the Directive provides for the possibility of derogating from the health exposure limits, explicitly referring to the case of MRI. However, protection issues related to effects associated with movements of workers in the SMF are not completely addressed by EU limits. ICNIRP has published a guideline on this matter in 2014, but it has not yet been transposed into the Directive.

Methods Measurements were performed of low frequency switched gradient magnetic fields and of the magnetic flux density experienced as variable by workers moving in the SMF of 1.5 T, 3 T and 7 T MRI scanners. In the latter case, three different metrics were applied to process the collected data and compare them with the EU Directive Exposure Limit Values (ELVs) for SMF, the ICNIRP basic restrictions (BRs) aimed at preventing vertigo effects and the ICNIRP reference levels (RLs) intended to prevent stimulation effects. Results Regarding movement in the SMF, reported values of the peak magnetic flux density, of its variation in 3 s and of the weighted-peak indices for stimulation effects show several cases of non-compliance with the corresponding ICNIRP BRs and RLs even when EU Directive ELVs are complied with. Results of exposure to low frequency magnetic fields are being processed. Acknowledgments part of the work presented is funded by INAIL, Italian Workers’ Compensation Authority.

SOLAR UV: A RELEVANT OCCUPATIONAL RISK OVERLOOKED. EXPOSURE IN WORKERS, EFFECTS, PREVENTION

Fabriziomaria Gobba. University of Modena and Reggio Emilia, Modena, Italy

Introduction Inside the diagnostic chamber of magnetic resonance imaging (MRI) scanners, every worker (medical personnel, cleaners, administrative, etc.) is affected by the strong static magnetic field (SMF) emitted continuously by superconducting magnets (24 hours per day).

Methods A retrospective study on the variety of parameters characterising the static and dynamic influence of SMF: B-field level and spatial distribution, spatial gradients (dB/dx), dynamic changes of exposure caused by body movements (dB/dt)) covered their analysis based on the results of our 25-year-long investigations into the context of the development of scanner design, work practice, requirements of occupational legislation and an understanding of the nature of health and safety hazards.

Results We found significant variability in the exposure pattern, and that exposure parameters may not be proportional to the magnet power, but may be highly dependent on the scanner design. It suggests the potential to reduce worker exposure by ergonomic and organisational interventions.

Conclusion Our extensive studies on workers’ SMF exposure near MRI scanners has shown that the set of SMF action levels (0.5, 3, 50, 200, 400 mT; 1, 2, 8 T) may sufficiently characterise various hazards caused by the static and dynamic influence of SMF on workers and various objects. The three-dimensional mapping of SMF distribution near MRI magnets, and its graphical representation in the diagnostic room, provides significant practical information for managers and workers in the MRI centre, leading to an understanding of how to develop the work practice in order to reduce daily exposure to SMF.

Research supported in Poland by the Ministry of Family, Labour and Social Policy – the National Programme ‘Improvement of safety and working conditions’ (project 1.G.12).

PREVENTION OF ELECTROMAGNETIC EXPOSURE OF WORKERS NEAR MRI SCANNERS – 25 YEARS OF EXPERIENCE IN POLAND

J Karpowicz, K Gryn. Central Institute for Labour Protection – National Research Institute, Warsaw, Poland

Aim of special session The exposure to Solar UV Radiation is a significant risk factor in several occupational activities and the adverse health effects induced in exposed workers, mainly to the skin and to the eye, are relevant, frequent and well documented. Nevertheless, we have to admit that this important occupational risk is usually underestimated, if not ignored. On the contrary, the development of adequate preventive measures represents a priority in OHS. Objective of this Special Session is an update on the results on exposure evaluation, adverse effects and enforceable prevention strategies in exposed workers.

Presenters March Wittlich1, Pietro Sartorelli2, Swen Malte John3, Alberto Modenes4, Peter Connaughton5, Shenghui Niu6

1Institute for Occupational Safety and Health (IFA), Sankt Augustin, Germany
2Unit of Occupational Medicine AOU Senese, Department of Medical Biotechnology, University of Siena, Siena, Italy
3Department of Dermatology, Environmental Medicine, Health Theory – Faculty of Human Sciences, University of Osnabrueck, Osnabrueck, Germany
4University of Modena and Reggio Emilia, Modena, Italy
Abstracts

1651a ON THE UV EXPOSURE OF WORKERS. WHAT DO WE KNOW?
M Wittich. Institute for Occupational Safety and Health (IFA), Sankt Augustin, Germany
10.1136/oemed-2018-ICOHAbstracts.1211

Introduction We are exposed to solar ultraviolet radiation (UVR) every day, during work and leisure time. To date, there is only little knowledge about the level of irradiance. Already in 1992, UVR has been graded a group 1 carcinogen by the International Agency for Research on Cancer (IARC). In an ageing society, along with an ideal of a brown skin, non-melanoma skin cancer (NMSC) incidence rates rapidly increase.

Methods For risk assessment and deduction of protective measures, real measured data serve best. Regarding solar UVR exposure, long-term personal dosimetry measurements are required. With GENESIS-UV we designed a suitable system. With only little impairment, each test person measures autonomously. Data are transferred via mobile service or internet to a data server once a week automatically. GENESIS-UV has proven to be feasible in collaborations in the whole world without any changes in the system.

Results Since 2014, about 800 test persons delivered data points representing about 80000 days of measurement – in Germany. We derived the annual irradiance for more than 100 occupations, and far more occupational activities as well. Interestingly, the irradiance values for the occupations cover a very wide range (www.dguv.de/genesis). Going deeper into the occupational activities, prevention-relevant information could be obtained. The measurements have been expanded onto an European level since 2016.

Discussion Outdoor workers have to be protected from UVR exposure. During working hours, their exposure can be up to 4.5 times the leisure dose. Our approach from occupations to occupational activities enables us to suggest very distinct protective measures, and drawing a full picture of workers exposure. Particularly, we showed that already short exposure times may lead to a notable hazard. Thus, the definition of an outdoor worker has to be reviewed. The study with GENESIS-UV is by far the largest study on UV irradiance of workers worldwide.

1651b PHOTOAGING IN OUTDOOR WORKERS: MARKER OF CUMULATIVE UV EXPOSURE, RISK FACTOR OR OCCUPATIONAL DISEASE?
1. P Sartorelli, G D’Haew, V Paolucci. 1Unit of Occupational Medicine AOU Senee, Department of Medical Biotechnology, University of Siena, Siena, Italy; 2UF PISLl AUSL Tuscany South-East, Grosseto, Italy
10.1136/oemed-2018-ICOHAbstracts.1212

Introduction Photoaging is characterised clinically by wrinkle formation and pigmentation alterations and histologically by deposition of elastic material in the dermal connective tissue of the dermis (solar elastosis). These undesirable changes, in addition to an increased fragility of the skin, have an important epidemiologic significance because sun damaged skin increases the incidence of non melanoma skin cancers (NMSC). For this photoaging is a real medical problem, not just an aesthetic concern.

How to measure photoaging There is no single method available to give accurate quantification of the degenerative changes associated with photodamage. In the last few years a number of authors used different methods as a measure of photoaging (e.g. confocal microscopy, microtopography and photographic scales). At the moment there is no agreement on how to assess photoaging.

How to consider occupational photoaging The functional and anatomical damage from solar radiation being characteristic, photoaging would be considered as a chronic disease. However there is a lack of methods of determining the level of photodamage and distinguishing photoaging from chronologic ageing. Today the better knowledge of the pathophysiological mechanisms of photoaging allows the study of photo(ageing) protective substances and of care for photoaged human skin. In this sense skin photodamage in outdoor workers could be considered as a risk factor.

Conclusions Even if photoaging is determined by a dose-dependent anatomical damage, considering it as an occupational disease would not be appropriate. Clinical features of photoaged skin can be useful to characterise the cumulative exposure level in working populations, while in the individual cases skin photoaging represents a NMSC risk factor which must be taken into account for possible preventive and therapeutic measures.

REFERENCE

1651c SOLAR UV EXPOSURE AND SKIN CANCER IN WORKERS
SM John. Dept. Dermatology, Environmental Medicine, Health Theory, University of Osnabrueck, Germany
10.1136/oemed-2018-ICOHAbstracts.1213

UV radiation (UVR) is invisible to the human eye, so is also, at least according to the official statistics in most countries, the prevalence of skin cancer caused by UVR at the workplace. For that reason, skin cancer by UVR (mainly actinic keratosis, squamous cell carcinoma and basal cell carcinoma) is a mayor challenge, considering that it is the most frequent and fastest growing occupational malignancy. According to EUOSHA more than 14.5 million workers across the EU are regularly working outdoors by ≥75% of their daily working hours. Thus, outdoor workers are in need of targeted protection against UVR, representing the group I definition for a complete carcinogen to humans according to IARC. Specific prevention measures, including workers education, early diagnosis and medical screening are crucial to minimise the risks and to reduce morbidity. Few European countries recognise occupational skin cancer by UVR as an occupational disease. Yet, even in those few countries, workers with skin cancers related to chronic, work-related solar UVR exposure are not granted legal recognition because under-reporting is tremendous. For instance, in Denmark, in the decennium after introducing of recognition in 2000, only 35 cases had been legally acknowledged as occupational. Recent German figures may provide an estimate of the disease burden. Within the first 24 months from its recognition (2015), more than 8000 cases of occupational ‘cutaneous squamous cell carcinoma or multiple actinic keratoses’ are notified each year, making it the most