in the urine, but extent of activation was not highly correlated with any single urinary PAH-OH marker.

Conclusion Among firefighters, urinary PAH-OH concentrations increase in both entry teams and engineers. The route and extent of dermal and inhalation exposure vary with the specific job task at the fireground. AhR and p53 in vitro bioassays demonstrate activation of cancer pathways following occupational exposure in firefighters.

Abstracts

53 HUMAN BIO-MONITORING OF EPOXY RESINS AND HARDENERS IN THE PRODUCTION OF ROTOR: BLADES

1T Schettgen, 1M Krichels, 1B Roosbach, 1T Kraus. 1Institute of Occupational and Social Medicine, RWTH Aachen University, 2Institute of Occupational, Social and Environmental Medicine, University Medical Centre of the Johannes Gutenberg-University, Mainz

10.1136/oemed-2018-ICOHabstracts.1179

Introduction In a small company producing rotor blades for aviation from carbon composites, epoxy resins based on Novolac and isophorone diamine as hardener are used. Both compounds can be absorbed via skin contact and shown to be strong skin sensitizers. As a part of risk assessment, the industrial physician prompted a biological monitoring to determine the internal exposure of the workers.

Methods 6 workers were identified with potential contact to hardener and Novolac via specific mass spectrometric and bisphenol-f-diglycidylether-metabolites as biomarker for the internal systemic inflammation of isophoronediamine in workers producing carbon composite rotor blades. We detected isophoronediamine in almost all urine samples with post-shift-values significantly higher than pre-shift. Median urinary excretion of isophoronediamine over the workweek was 195 μg/crea. (Monday pre-shift), 709 μg/crea. (Monday post-shift), 573 μg/crea. (Wednesday pre-shift) and 1319 μg/crea. (Wednesday post-shift). Results for urinary bisphenol-f-diglycidylether-metabolites were several orders of magnitude lower and near the limit of detection (0.5 μg/L).

Conclusion We found considerable internal exposures to isophoronediamine in workers producing carbon composite rotor blades. Our results indicate a cumulating internal exposure over the work-week. One of the workers showed clinical symptoms of allergic contact dermatitis in the skin examination. Use of inappropriate gloves was determined to be the cause for these high exposures. Biological monitoring should be part of risk assessment of workers handling epoxy resins.

684 EXPOSURE FROM GUN SMOKE ACTIVATES SEVERAL SYSTEMIC INFLAMMATORY PATHWAYS

1,2J Kongerud, 1,2K Boarander, 1V Voie, 1B Østebø, 1K Longva, 1NE Alsle, 1E Utland, 1,2L Øvland. 1Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; 3Department of Respiratory Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; 4Department of Environmental and Occupational Medicine, Oslo University Hospital, Oslo, Norway; 5The Occupational Health Service in the Norwegian Armed Forces, Sessvollmoen, Norway; 6Norwegian Defence Research Establishment, Division Protection, Kjeller, Norway; 7The Blood Cell Research Group, Dept. of Med. Biochemistry, Oslo Univ. Hosp. Ullevål, Oslo, Norway; 8Center for Environmental Medicine, Austin and Lung Biology, UNC Chapel Hill, North Carolina, USA; 9Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway

10.1136/oemed-2018-ICOHabstracts.1180

Introduction Norwegian Armed Forces reported episodes of acute respiratory symptoms after exposure to fumes from firing small arms weapon HK416 (Heckler and Koch) using unlead ammunition. These fumes contain a mixture of gases and solid particles, that may be capable of inducing inflammatory immune responses. The aim of the present study was to find out if exposure to fumes from small arms could induce systemic and airway inflammation, and whether there were any differences between the ammunition types (leaded, and two types of unleaded).

Methods Fifty-five healthy men (age 19–62) were recruited and randomised to three groups using HK416 and one of the three types of ammunition. Spirometry and collection of blood and sputum samples were performed 2–4 days before shooting, and 1.5 hour (spirometry), 24 hour (blood and spirometry) and 48 hour (sputum) after shooting under standardised conditions. Exposure was monitored.

Results All subjects had a significant increase in median sputum and blood neutrophils (sputum: 46% to 73%, p<0.001; blood: 2.9 × 10⁶/mL to 7.1 × 10⁶/mL, p<0.001). CRP was significantly elevated from 1.3 mg/L to 18.5 mg/L (p<0.001) along with other markers of systemic inflammation (PTX3, YKL-40, SpD, CC16, CXCL16, vWF, MPO, CD25, CD14). CRP and number of neutrophils in blood had a larger increase with unleaded as compared to leaded ammunition. For the whole group, mean FEV₁ and FVC decreased 290 mL (p<0.001) and 130 mL (p<0.001), respectively.

Discussion All subjects displayed elevated airway and in particular systemic inflammation following the use of small arms. The changes in systemic markers were enhanced acute stress response (CRP, PTX3), immune cell upregulation (CD25, CD14) and increased vascular inflammation (MPO, vWF, CXCL16, YKL40). Increased airway inflammation was present at 48 hour post exposure and was accompanied by reduced spirometry that appeared <1.5 hour and lasted >24 hour after exposure. These results suggest that soldiers may be at increased risk to inflammation-based disorders when repeatedly using small arms.

753 COMBINATION OF CELLULAR ASSAYS WITH METABOLOMICS REVEALED MECHANISTIC INSIGHTS ON DOSE-RESPONSE RELATIONSHIP OF 3-NITROBENZANTHRONE IN HUMAN UROTHELIAL CANCER CELLS

Simone Schmitz-Spanke*, Nisha Verma, Anna Zerries, and Mario Pink. Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, University of Erlangen-Nuremberg, Schillerstr, 25/29, 91054 Erlangen, Germany

10.1136/oemed-2018-ICOHabstracts.1181

Introduction A product of incomplete combustion of diesel fuel, 3-nitrobenzanthrone (3-NBA), has been classified as a cancer-causing substance. It gained attention as a potential urinary bladder carcinogen due to the presence of its metabolite in urine and formation of DNA adducts.

The aim of this study was to characterise the dose-response relationship starting from environmentally relevant to high concentrations by utilising toxicological and metabolomic approaches to determine the toxic potential of 3-NBA in bladder cells.

Method Cells of RT4 cells were exposed against 0.3 nM to 80 μM 3-NBA for 24 hour. Both activity of enzymes involved in the metabolism of 3-NBA as well as cytotoxicity were