EPigenetic Changes in FireFighters

Introduction
Firefighters are exposed to carcinogens and have elevated cancer rates. Cancer may be caused by activation of oncogenes or inhibition of tumour suppressor genes, such as through alterations in microRNA (miRNA) concentrations and DNA methylation. We hypothesised that occupational exposures in firefighters would lead to epigenetic changes associated with activation of cancer pathways and increased cancer risk. We designed this study to compare epigenetic changes in incumbent firefighters and new recruits.

Methods
At the time of subject selection, the study population consisted of 119 incumbents and 70 recruits. From this group, 108 subjects were randomly selected for miRNA analysis and 96 for DNA methylation analysis, both evenly divided among incumbents and recruits. Only non-smoker male firefighters were included in the final comparison. MiRNAs and DNA methylation were measured with the nCounter Human v3 miRNA expression assay with over 828 miRNAs and the Illumina MethylationEPIC 850 k chips, respectively.

Result
After adjusting for age and BMI, miR-1260a, miR-145–5p, miR-181c-5p, miR-331–3p, miR-361–5p, and miR-584–3p were significantly downregulated in incumbent firefighters. MiR-208b-5p, miR-30e-3p, and miR-486–3p were significantly overexpressed in incumbents. Controlling the genomewide false discovery rate at 5%, 22 CpGs were annotated to promoter regions of a gene and were hypermethylated in the incumbents including YIPF6, HELB, SYT5 and DVL2.

Discussion
MiR-181c-5p, miR-145–5p, and miR-30e–3p are involved in tumour suppression. MiR-30e–3p is upregulated in skin cancer and is a poor prognostic factor in lung cancer. Co-amplification of the YIPF6 gene with the androgen receptor may stimulate prostate tumour progression. Abrupt activation of HELB reduces genomic stability, a hallmark of cancer. SYT may have a novel function in breast cancer. DVL2 is a part of the Wnt signalling pathway involved in multiple cancers. These epigenetic biomarkers of carcinogenic exposure in firefighters should be further evaluated in larger studies.

Abstracts

Methods
The controls/interventions used, comprised the following:

- a retrospective analysis of all historical biological monitoring results with direct comparisons to the man–job specifications, as well as the occupational hygiene monitoring results of airborne pollutants;
- an intensive Lead study, which included a visit to a nearby Lead refining facility to obtain comparative data;
- the demarcation and separation of work zones including changing and dining facilities;
- conducting of medical examinations, to include Lead effect monitoring;
- a review of personal protective equipment (PPE) and implementation of controls to ensure correct use thereof;
- introduction of a comprehensive Lead–health training programme; and
- introduction of a three-monthly biological blood Lead monitoring and counselling programme.

Results
As a consequence of the above controls/interventions, the average blood Lead level decreased from 43 µg/dl in 2015, to 23 µg/dl for the half year average of 2017, representing a 45% decrease over a period of 18 months. Some employees achieved significant decreases in lead levels, from well above 30 µg/dl to well below 20 µg/dl.

Discussion
An increased understanding and awareness of the hazards of Lead, both by the employer and employees, resulted in a significant decrease in the average blood Lead burden of the workforce. The continuous application of control/interventions in the workplace should lead to further decrease in the average blood Lead levels well below the South African legal limit.

THE DECREASE OF BIOLOGICAL BLOOD LEAD LEVELS AT A LEAD NITRATE PLANT IN SOUTH AFRICA

Susanne Martinuzzi*

1SHE Consultant, Aerocell (Pty) Ltd, Springs, South Africa

10.1136/oemed-2018-ICOHabstracts.1145

Introduction
Following a significant increase in production at a Lead Nitrate plant in South Africa, the blood lead levels in their employees also increased. This was concerning as the average blood Lead results in 2015 increased to 43 µg/dl, well above the legal South African National limit of <20 µg/dl. This prompted the need to introduce more stringent controls/interventions in order to decrease the average blood Lead levels and avoid adverse health effects to the workers.

METHODS

- Conducting of medical examinations, to include Lead effect monitoring;
- A review of personal protective equipment (PPE) and implementation of controls to ensure correct use thereof;
- Introduction of a comprehensive Lead–health training programme; and
- Introduction of a three-monthly biological blood Lead monitoring and counselling programme.

RESULTS
As a result of the above controls/interventions, the average blood Lead level decreased from 43 µg/dl in 2015, to 23 µg/dl for the half-year average of 2017, representing a 45% decrease over a period of 18 months. Some employees achieved significant decreases in lead levels, from well above 30 µg/dl to well below 20 µg/dl.

DISCUSSION
An increased understanding and awareness of the hazards of Lead, both by the employer and employees, resulted in a significant decrease in the average blood Lead burden of the workforce. The continuous application of control/interventions in the workplace should lead to further decrease in the average blood Lead levels well below the South African legal limit.