this varied between tools and type of exposure. Correlations between the measurement results and tool predictions also varied with tool and exposure type. Furthermore, a wide range of exposure estimates were observed when different users were asked to apply the same tools to the same scenario conditions.

Conclusion Models to estimate exposure and risk are essential elements of the toolbox of occupational hygienists and risk assessors and managers. However, there is increasing evidence that performance varies between tools, type of exposure and scenario conditions. More importantly, users appear to struggle to apply the tools consistently, leading to wide ranges in estimated exposures. There is an urgent need for the development and implementation of generic quality control procedures for use of exposure tools, to reduce the large uncertainties when applying these tools, both to prevent workers from being excessively exposed and unnecessarily implementation of stringent exposure control measures.

A QUASI EXPERIMENTAL UNCONTROLLED BEFORE-AFTER STUDY TO ASSESS IMPACT OF CASHE INTERVENTIONS IN THE YEAR 2016–2017 AT PETROCHEMICAL INDUSTRY

1PS Sah*, 2R Rajesh, 3P Dave. 1Reliance Industries Limited, Dahej Manufacturing Division, Bharuch, Gujarat, India; 2Reliance Industries Limited, Mumbai, Maharashtra, India

Introduction To inculcate best practices in the field of OH; RIL has launched the initiative in 2003 known as CASHe in all 7 manufacturing sites. The various interventions under this project are excellent examples of team work of medical, safety, environment and technical department of respective manufacturing sites. Previously there wasn’t any scientific research approach to evaluate their outcomes at RIL-DMD-which is amongst the largest petrochemical site of RIL. So the present study was carried out to address this need.

Methods There are total 12 manufacturing plants and each of them were considered as a unit of the study. The secondary data from all these 12 plants were collected going 1 year retrospectively using semi-structured proforma regarding various CASHe interventions and compiled using MS Excel 2007. Data triangulation was done using OHC data (IH Surveys and HMIS) with plant data. After necessary editing and exclusion (i.e. projects lacking before-after data, qualitative data) student paired T test was applied to find out statistical significance.

Result There were total 187 interventions (mean=15.58/plant) addressing noise, heat, chemical exposure, ergonomics, safety and environmental hazards. Out them 142 completed and 45 in progress. Total 3316 persons (928 employee and 2388 contract workers) trained for different OH training with average 600 man hours/department.

CASHe project outcomes were successful in terms of reducing hazards, workplace improvements and wellness of employee. So the present study experiments guide other industries to deal with noise, heat, highly toxic material safely and reduce their exposure along with taking care of life style diseases of their employees.

1715 MEDICHEM SYMPOSIUM: HOW EPIDEMIOLOGY CAN INFORM NON-LINEAR DOSE-RESPONSES FOR OCCUPATIONAL CARCINOGENS

Kenneth Mundt*. Ramboll Environ, Amherst, Massachusetts, USA

Aim of special session Epidemiological evidence challenges the linear no-threshold default model for cancer risks. The methodological and regulatory implications are explored.

1Dr. Paolo Boffetta, 2Dr. Harvey Checkoway, 3Dr. Dirk Pallapies

1Icahn School of Medicine at Mount Sinai, New York, New York, USA
2University of California, San Diego, La Jolla, CA, USA
3Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr Universität Bochum (IPA), Bochum, Germany