Abstracts

actual documentation and/or publication of their work. Thus, the extraordinary evolution and influence of history upon contemporary science and practice may not be fully appreciated and could potentially be lost to future generations of workplace health and safety researchers and practitioners.

Methods Join us as we explore this phenomenon and engage one another in identifying key resources and platforms for the selection, archival, and preservation of the essential historical resources connecting our past to the present day. In this workshop, we will reflect on the merits of establishing a centralised database for historical documents, share choices in personal archival methodology and technology, fully explore The History of Prevention of Occupational and Environmental Diseases web archive project, and provide practical hand-on experience in the archival of one’s own content. In preparation, workshop participants are urged to bring three pieces of informational content (i.e., paper documents or electronic publications) to contribute to the archive.

Results This workshop will highlight the significance of historical preservation and impart methodology, technology, and best practices for the archival of historical documents. Through practical experience in contributing content to a centralised platform, participants will learn the steps necessary to establish one’s own strategy for archival.

Conclusion Our goal is to reintroduce historic research into the occupational safety and health community—saving valuable time and resources spent to rediscover historical significance. A concerted effort to preserve and share accrued knowledge will afford current and future generations with the opportunity to more fully explore historic ‘windows of influence’ and lessons learned, providing foundational elements upon which to discover future avenues for the reduction of harmful occupational exposures and improved worker protection across the U.S. and around the world.

1678 HISTORICAL PERSPECTIVES ON OCCUPATIONAL HEALTH IN IRELAND

1 Paul D Blanc*, 2 Alfredo Menendez-Navarro, 3 J Hayes, 4 AE Evans, 5 K Addley, 6 JIA Malone. 1University of California San Francisco San Francisco, California, USA; 2Universidad de Granada, Granada, Spain; 3Department of Respiratory Medicine, RCSI Hospital Group Ireland; 4The Centre for Public Health, The Queen’s University of Belfast; 5Faculties of Occupational Medicine, Royal College of Physicians of Ireland, Dublin, Ireland; 6The Faculty of Occupational Medicine Royal College of Physicians of Ireland

10.1136/oemed-2018-ICOHabstracts.530

Aim of special session This session will address the Irish perspective on the history of occupational disease.

1678b FLAX AND LINEN IN THE HISTORY OF IRISH INDUSTRIAL HEALTH

AE Evans. The Centre for Public Health, The Queen’s University of Belfast

10.1136/oemed-2018-ICOHabstracts.532

Flax was once grown in every county of Ireland, when the production of linen was an entirely cottage industry. After the Williamite war of 1691 immigration to Ireland was encouraged and many who came were Huguenots from France. Notably Louis Crommellin came to Lisburn, in County Down, to establish a colony of Huguenot linen weavers. Just how much their arrival contributed to innovation is arguable but they enriched the range of linen idiom. Linen manufacture came to be concentrated in north-west Ulster. Ramazzini, in 1705, had noted respiratory problems associated with ‘a foul mischievous powder’ entering the lungs of flax hacklers, but it was not until production was mechanised in the 19th Century that it became a serious problem. In 1831 Thackrah described similar cases in Leeds; by 1860 Greenhow had employed the term ‘Bysinessis’ (from the Greek ‘bussinos’ – of linen) in an official document and recorded that the condition was exacerbated on Mondays, ie ‘Monday Fever.’ In 1856, Malcolm in Belfast, demonstrated that the condition was related to the initial, dustier phases of linen manufacture. Another Ulster doctor, Charles Nicholas Delacherois Purdon (who had Huguenot forebears), in the 1870s described diseases associated with linen manufacture: ‘…one of the most injurious, and in certain branches very fatal, is the effect induced by the inhaling of flax dust, called by the workers ‘Pouce,’ (from the French: ‘poussif’ – wheezy) which is produced, when the fibre is cleansed by machinery.’ Those employed as ‘doffers’ (from the French: ‘démonteurs’ – dismantlers) who removed the spindles did not suffer from Pouce because they were exposed to heat and vapour rather than dust which rendered them more susceptible to bronchial
attacks ‘(Mill Fever).’ Thanks to John Pemberton’s (and others’) research at The Queen’s University of Belfast, Flax Byssinosis became a Prescribed Industrial Disease in 1965.

1678c SHIPBUILDING IN BELFAST IN THE EARLY TWENTIETH CENTURY: THE TITANIC ERA AND ASSOCIATED HEALTH AND SAFETY MATTERS
K Addley. Faculty of Occupational Medicine, Royal College of Physicians of Ireland, Dublin, Ireland
10.1136/oemed-2018-ICOHabstracts.533

In the 1830’s, factory-based linen production had made Belfast the most important industrial town in Ireland and the addition of shipbuilding in the 1880’s completed its transformation to a major manufacturing city. There was access to a ready pool of unskilled local labour with a robust work ethic and shipbuilding was one of the city’s main employers giving it both wealth and prestige. It was a vibrant, expanding industry whose later decline greatly affected Belfast and its people. The period between 1880 – 1914 was the golden age of Belfast shipbuilding, with massive growth in the industry specialising in passenger liners, cargo-passenger ships and large ocean-going cargo vessels. During this time, Belfast was producing up to 10% of the British merchant shipping output. Harland and Wolff is the best known of the Belfast shipbuilders employing in the period 1900–20, 20,000 workers. Between 1914 – 1918 saw the beginning of a decline of shipbuilding in Belfast. Shipyard work was heavy and hazardous with many physical hazards including falls, noise and vibration. Asbestos was frequently used leading to asbestosis, pleural plaques, and pleural mesothelioma. There were safety and health shortcomings consistent with the time and a health legacy in regard to asbestos-related lung disease, mesothelioma, occupational deafness and vibration white finger. There was recognition of the potential that materials being used may have long latency health risk, avoiding complacency, also that learning from mistakes and improved engineering design and safety equipment on board vessels can markedly improve worker safety and health and save lives. The workers of the Belfast shipyard would perhaps be proud to see their story being told today as part of the regeneration of Belfast with the city moving forward after many years of conflict and decline.

1678d OCCUPATIONAL HEALTH IN IRELAND AS A PROFESSION – THE LAST 50 YEARS. WHILE RAMAZINNI IS THE GRANDFATHER OF OCCUPATIONAL HEALTH, IS THERE AN IRISH PHYSICIAN WHO IS THE GREAT GRANDFATHER OF OCCUPATIONAL HEALTH?
JM Malone. The Faculty of Occupational Medicine Royal College of Physicians of Ireland
10.1136/oemed-2018-ICOHabstracts.534

The Faculty of Occupational Medicine, Royal College of Physicians of Ireland (RCPI) was founded in 1976. Its objective was to advance the science and practice of occupational medicine and to promote education, study and research in the specialty. Its core membership has all-Ireland representation, stemming from the College’s Royal Charters in the seventeenth century. The Faculty has been an integral part of RCPI since its inception. The Faculty was involved in occupational medicine being recognised as both an Irish and European Medical Specialty. It developed the Licentiate and Membership Examinations which became sought after qualifications at home and abroad. It has held annual examinations in Ireland since 1983 and holds annual overseas examinations in Malaysia since 1995 and more recently in the Al Ain. The Faculty initiated and maintains a comprehensive training scheme for its specialist doctors in training. This paper gives a chronological account of the activities of the Faculty, from the mid-1970’s up to current times. It is based on the archive records of the Faculty, including the minutes of the Board meetings of the Faculty and the College (RCPI). It covers that period of change that affected many disciplines involved in occupational health i.e. nurses, hygienists, toxicologists, safety officers, psychologists and others, as well as the changes that the factory doctor underwent as he/she became a 21st century occupational physician. The role of the Faculty is to maintain integrity and professional competence of doctors engaged in occupational medicine. It operates the professional competence scheme on behalf of the Medical Council for specialist occupational health physicians.

613 OCCUPATIONAL HEALTH AND SAFETY PERSPECTIVES OF LOUISIANA FIRST RESPONDERS INVOLVED IN THE 2010 DEEPWATER HORIZON OIL SPILL
1Johnathan Z Pangborn*, 2Kevin J Moore, 3Katerina M Santiago, 4Edward J Trapido, 5Wilma A Subra, 6Tora E Fleming, 1Alberto J Caban-Martinez. 1University of Miami, Miller School of Medicine, Department of Public Health Sciences, Miami FL, USA; 2Louisiana State University, School of Public Health, Department of Epidemiology, New Orleans LA, USA; 3Subra Company, Louisiana Environmental Action Network, Lower Mississippi Riverkeeper, New Iberia LA, USA; 4European Centre for Environment and Human Health, University of Exeter Medical School, Truro, Cornwall, UK
10.1136/oemed-2018-ICOHabstracts.535

Introduction The 2010 Deepwater Horizon oil spill is considered the largest accidental marine oil spill in United States history. The oil spill had severe environmental impacts on the United States Gulf coastline as well as far-reaching effects on the health and safety of first responders. Despite national significance of the oil spill, there is limited information documenting the long-term health and safety experience of this workforce. This study examines the occupational health and safety perspectives of first responders involved in the 2010 Deepwater Horizon oil spill.

Methods Six focus group sessions (8–10 participants each) were conducted in May 2017. Firefighters were consented and invited to complete a self-administered questionnaire, followed by a 60 min semi-structured focus group session assessing perceptions of safety and health conditions related to the oil spill event. Focus group audio files were transcribed verbatim and analysed using a general inductive approach to identify emergent themes.

Result Study participants (n=50) were mostly male (98.0%), non-Hispanic (95.3%), white (98.0%), with a mean age of 40.6 years (standard deviation [SD]=9.8), and mean job tenure of 15.3 years (SD=8.2). Among respondents, 56.3% of participants reported direct contact with oil, 36.7% visited a hospital within 3 months and 61.3% of 348 participants reported direct contact with oil, 36.7% visited a hospital within 3 months and 61.3% of 348 participants reported direct contact with oil, 36.7% visited a hospital within 3 months and 61.3% of 348 participants reported direct contact with oil, 36.7% visited a hospital within 3 months and 61.3% of 348 participants reported direct contact with oil, 36.7% visited a hospital within 3 months.

Abstracts

Occup Environ Med 2018;75(Suppl 2):A1–A650

A189

Occup Environ Med, first published as 10.1136/oemed-2018-ICOHabstracts.532 on 24 April 2018. Downloaded from http://oem.bmj.com/ on October 20, 2023 by guest. Protected by copyright.