The aim of this study was to assess the role of OSAS in occurrence of road traffic accidents in sleeping drivers of commercial heavy vehicles, such as buses and truck drivers. This cross-sectional and case-control study was carried out on 760 truck and bus drivers that were involved in a road accident between 2009 and 2011 in Yazd, Iran. In this study, we used the Polysomnography method for assessing patients with suspected sleep disorders, including sleep apnea. The stage of sleep is assessed by electroencephalography. The findings indicated that among 760 drivers, 91 drivers had more than 10 ESS score. Among 91 drivers, 35 drivers involved in one accident and 38 drivers had no history of accident in the study period. Driving in the night time had a significant association with road accident occurrence in the participated drivers (p=0.01). Drivers who have sleepiness and especially OSAS had more chance to involve an accident. But OSAS was not an independent predictor of road accident.

Oral Presentation

Other

0318 OCCUPATIONAL EPIDEMIOLOGY RESEARCH IN THE NEW “LOW-CARBON” ECONOMY.

Jonathan Patz, University of Wisconsin, Madison, WI, USA

10.1136/oemed-2017-104636.259

Occupational health risks posed by climate change have focused on heat-related illness and mortality, and a growing body of evidence shows substantial risks to health and economic productivity for many countries. Since the 2015 Paris Agreement on climate change, the shift away from fossil fuel-based economies has accelerated. Potential population health benefits from improved air quality, more physically active urban commuting and reduced future heating of the planet are substantial. However, unquantified is the extent that technologies in renewable energy sources pose risks to workers. A comparison between fossil fuel-related job risks and those stemming from renewable energy-related jobs will be presented. Gaps in knowledge will be identified to help guide the safest path for workers in our evolving low-carbon society.

Note this abstract is part of the Mini-Symposium, Climate Change impacts on Occupational Health via workplace heat (Tord Kjellstrom, organiser).

Poster Presentation

Risk Assessment

0317 APPLICATION OF FAILURE MODE AND EFFECT ANALYSIS (FMEA) TO ASSESS OCCUPATIONAL RISKS IN OIL REFINERY

1, Mehrzad Ebrahemiadi*, 2, Cholam Hossein Halvani. 1, Environmental Health Research Centre, Kurdistan University of Medical Sciences, Sanandaj, Iran; 2, Department of Occupational Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran

10.1136/oemed-2017-104636.258

Abstract Failure Modes and Effect Analysis (FMEA) is a systematic method for identifying the factors that a product or process encounter with, and identifying their results and effects. The aim of this study is to evaluate the potential occupational risks in different parts of the one of oil refinery in central Iran by using risk assessment techniques. This cross-sectional study was conducted in Shiraz Refinery and relationship RPN (Risk Priority Number) with tasks such as milling, welding, transportation handling, and etc. were studied in this company. The findings showed that transportation and handling and then external surface scraping achieved the highest of RPN before and after corrective measures (200, 210) and (72, 84) respectively. While RPN for welding and drilling (punching the external surfaces) before and after corrective measures are (144, 120) and (24, 36) respectively. But hazard severity curve show tasks with lower RPN in comparison with those have higher RPN are more important of injury severity. some of tasks such as, handling and transportation and milling have high RPN and by using effective control measures can eliminate or control hazards. Then Failure Modes and Effect Analysis is a useful and efficient for hazard assessment.

Pesticides

0320 INDIRECT PARENT-MEDIATED PATHWAYS OF CHILD EXPOSURE TO 2,4-D AND CHLORPYRIFOS IN FARM FAMILIES

1, Ashley Hernandez*, 1, Timothy Church, 2, Jack Mandel, 1, Bruce Alexander. 1, University of Minnesota School of Public Health, Minneapolis, MN, USA; 2, Exponent Inc., Oakland, CA, USA

10.1136/oemed-2017-104636.260

Background To reduce children’s exposure to pesticides used on farms, identifying and interrupting exposure pathways is critical. We evaluated applicator (parent) exposure as a determinant of...