Oral Presentation

Molecular epidemiology

INVESTIGATING THE REPRODUCIBILITY OF METABOLOMICS PROFILES OF WASHINGTON STATE METAL WORKERS

Marissa Baker*, Christopher Simpson, Yvonne Lin, Noah Seixas, University of Washington, Seattle, WA, USA

10.1136/oemed-2017-104636.239

Manganese (Mn) is a known neurotoxicant, and given its health effects and ubiquitous nature in metal-working settings, identification of a valid and reproducible biomarker of exposure is of interest. Global metabolomics were previously utilised to determine metabolites that differ between occupational groups defined by Mn exposure status, in hopes of informing a biomarker of exposure. Nine metabolites were found to differ between exposure groups in urine samples collected October 2014. To test the reproducibility of these metabolites, these nine metabolites were investigated in a second set of urine samples collected January 2015 from the same workers.

Levels of the nine metabolites found in October 2014 were compared to the January 2015 data using principal components analysis and descriptive measures. Also, an elastic net regression was fit using the nine metabolites from the October 2014 data; this model was tested in the January 2015 data.

Four of the nine ions remained significantly different between exposed and unexposed workers in the January data, though levels of most ions also exhibited regression to the mean. The elastic net model was able to correctly classify exposure status in 66% of the January samples; slightly better than classification by chance alone.

Metabolomics is a novel technique for exposure assessment, but few studies have looked at the reproducibility of metabolomics data by collecting repeat samples from the same workers. This analysis found several ions that do seem to remain stable over time, and identification of these ions should be pursued as potential biomarkers of Mn exposure.

Oral Presentation

Musculoskeletal

INTERNATIONAL JOB-EXPOSURE MATRIX ON PHYSICAL WORKLOAD: A SECOND STEP ABOUT AN UTOPIA?

Alexis Descatha*, Johan H Andersen, Skye Buckner-Petty, Susanne W Svendsen, Annette Dalbøge, Line S Rubak, Paul Frost, Ann-Marie Dale, Bradley A Evavold. 1UVSQ Inserm AP-H, Garches, France; 2University Research Clinic, Herlev, Denmark; 3Washington University in St Louis, St-Louis, MO, USA; 4Aarhus University Hospital, Aarhus, Denmark; 5Bolshoye University Hospital, Søborg, Copenhagen, Denmark

10.1136/oemed-2017-104636.240

Introduction: Job-exposure matrices (JEMs) approaches have been recently developed on physical workload in US, Denmark and France. A comparison between US and Danish JEMs revealed substantial reliability and concordance. We aimed to describe correlation between French, US and Danish JEMs, in order to confirm that some variable of physical workload JEMs may be internationally generalizable.

Methods: US “O*NET” variables, two Danish expert based JEMs (Lower Body and Shoulder), were compared to variables of “MADE”, French expert based JEM. The Danish JEMs were based on occupational titles in the Danish version of the International Standard Classification of Occupations 1988 (ISCO88). Exposure estimates for Danish ISCO88 codes had been connected to “O*NET” exposure estimates through ISCO08 and Standard Occupational Classification (SOC) codes. “MADE” is available on French coding system (PCS03) and ISCO8.

Results: Crosswalk from ISCO08 to SOC and Danish ISCO 88 has been performed, to allow building a matrix of correlations based on Pearson correlation coefficients.

Conclusion: These results seem to confirm the possibility of international job-exposure matrices on physical workload.

Poster Presentation

Other

CURRENT RESEARCH PRIORITIES FOR UK OCCUPATIONAL PHYSICIANS AND OCCUPATIONAL HEALTH RESEARCHERS— A MODIFIED DELPHI STUDY

Drushca Laloo*, Evangela Demou, Julia Madan, Kaveh Asanati, Ewan B Macdonald. 1Healthy Working Lives Group, Institute of Health and Wellbeing, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ, Glasgow, UK; 2MRC/CSO Social and Public Health Sciences Unit, Institute of Health and Wellbeing, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ, Glasgow, UK; 3Occupational Health Department, University Hospital Southampton NHS Foundation Trust, Room Block 4, MP100, Southampton General Hospital, Tremorfa Rd, SO16 5UD, *on behalf of the FOM, London, UK; 4Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, Occupational Health Department, The Education Centre, St Thomas’ Hospital, Westminster Bridge Road, SE1 7EH, *on behalf of the FOM, London, UK; 5Imperial College London, National Heart and Lung Institute, Respiratory Epidemiology, Occupational Medicine and Public Health, Emmanuel Kaye Building, 1b Mannresa Road, SW3 6LR, London, UK

10.1136/oemed-2017-104636.241

Objectives: Studies identifying occupational health (OH) research priorities have been conducted in several countries, to establish where OH research should be focusing and where funding should be targeted. The UK findings however, are now over 20 years old. OH practice is continuously evolving, with advances in technology, changes in work practices and customer/workforce needs.

Aims: To identify the current research priorities for UK occupational physicians (OPs) and occupational health researchers (OHRs).

Methods: A modified Delphi study of current research priorities for UK OPs and OHRs, is being undertaken. It will be