nocomposite sensor array electronic nose within 30 min. We used the profusion category ≥1/1 in chest X-ray in accordance with the ILO-2011D criteria as the reference standard to assess the diagnostic accuracy. Data were randomly split into 80% for model building and 20% for validation. By linear discriminant analysis, the sensitivity was 71.0%, specificity was 91.8%, accuracy was 86.8%, and ROC-AUC was 0.89 in the training set, and the sensitivity was 80.0%, specificity was 66.7%, accuracy was 70.0%, and ROC-AUC was 0.79 in the validation set. Breath test might have potential in the screening for pneumoconiosis; however, a multi-centre study is warranted to establish a reliable model and all procedures must be standardised before clinical application.

Poster Presentation
Methodology

BIG DATA AND OCCUPATIONAL HEALTH VIGILANCE: USE OF FRENCH MEDICO-ADMINISTRATIVE DATABASES FOR HYPOTHESIS GENERATION REGARDING OCCUPATIONAL RISKS IN AGRICULTURE

Charlotte Maugard*, Delphine Bosson-Rieutort, Olivier François, Vincent Bonnetere, Grenoble-Alpes University (UGA)/TIMC-IMAG Laboratory (UMR CNRS 5525)/EPSP Team (Environment and Health Prediction of Populations), Grenoble, France; Grenoble-Alpes University (UGA)/TIMC-IMAG Laboratory (UMR CNRS 5525)/BCM Team (Computational and Mathematical Biology), Grenoble, France; Modernet Network, –, France

Surveillance of diseases and associated exposures is a major issue in occupational health, especially identifying and preventing new threats for worker’s health. New complementary methods relying on exploitation of already existing data, such as those from health insurance, could be developed to look for relevant signals for early detection of emerging occupational diseases. In this context, a systematic data mining could be performed on databases from the “Mutualité Sociale Agricole” (MSA), the dedicated social security system to French agricultural workers, which covers about 3 million individuals. As this healthcare system holds a large amount of data, MSA databases could allow us to apply “big data” analytics in order to study occupational risks of French agricultural workers. Thereby, this innovative approach could permit to look for associations between diseases and occupational activities without any prior hypothesis and also could have the potential to be used on continuous data flow for vigilance.

The authorisation of the French National Commission on Informatics and Liberty allowed the cross-linking of MSA databases using a common anonymous identifier for each individual. The main methodological point is programming of unsupervised analysis, especially latent models of mixed factors, applied to the “occupational activity x diseases” matrices. Due to the lack of direct information about exposure, a complementary work is performed to estimate retrospectively the exposure to pesticides of agricultural workers.

This innovative method which will be presented, has the following advantages: 1) offers a systematic approach, 2) has a strong statistical power, 3) is costless about data acquisition.

Oral Presentation
Shift Work

SHIFT WORK AND INCIDENCE OF CARDIOVASCULAR DISEASES IN THE DANISH NURSE COHORT

Jeanette Therming Jorgensen*, Rikke Hans, Leslie Stayner, Johnni Hansen, Zorana Ivancovic Andersen, University of Copenhagen, Copenhagen, Denmark; University of Illinois at Chicago School of Public Health, Chicago, IL, USA; University of Southern Denmark, Odense, Denmark; Danish Cancer Society, Copenhagen, Denmark

10.1136/oemed-2017-104636.198

Withdrawn at the author’s request
Objective Shift work and risk of cardiovascular diseases (CVD) have been investigated during many decades. The evidence is, however, still conflicting. This study aims to examine whether shift work among Danish female nurses is associated with the risk of CVD.

Methods 28,731 women from the Danish Nurse cohort (44 years old at recruitment in 1993 or 1999), who reported information on shift work (day, evening, night, or rotating), were linked to the Danish National Patient Register, to obtain information on CVD (ICD-10: 100-99; ICD-8: 390-458) hospital contacts (emergency, in- or outpatient) from 1978 until August 2015. We used Cox regression models to examine the association between shift work and the incidence of CVD, defined as the first-ever hospital contact for CVD after cohort baseline, adjusting for the most important risk factors.

Results Of 16,086 nurses without previous CVD events at baseline, 5,04 developed CVD during a mean follow-up of 16 years, with an incidence rate of 21.4 cases per 1,000 person-years. 63.4% of the nurses reported day work as their primary work schedule, while 10.0%, 5.3% and 21.6% worked in evening, night and rotating shifts, respectively. We found no associations between shift work and the risk of CVD when compared to day workers, with hazard ratio of 0.99 (95% confidence interval 0.91–1.09) for evening, 1.01 (0.90–1.13) for night and 1.03 (0.96–1.10) for rotating shifts, in the fully adjusted model.

Conclusion We found no evidence of an increased risk of CVD among female shift workers.

Poster Presentation
Exposure Assessment
0249 JOE-EXPOSURE MATRIX FOR HISTORICAL EXPOSURE TO RUBBER DUST, RUBBER FUMES, AND N-NITROSAMINES IN THE BRITISH RUBBER INDUSTRY

In 1982 IARC concluded that there was sufficient evidence for a causal association between occupational exposures in the rubber manufacturing industry and urinary bladder cancer and leukaemia. To enable evaluations of exposure-response associations in a cohort of men age 35+ employed in the British rubber industry in 1967 with a 49 year mortality followup (n=40,867), we created a quantitative historical job-exposure matrix (JEM) covering the period 1915–2000 based on personal and area measurements previously collated within the EU-EXASRUB project for rubber dust (n=4,187), rubber fumes (n=3,852), and N-Nitrosamines (n=10,215). These data were modelled by job function using linear mixed-effects models with sample year and industry sector as explanatory factors and a random factory intercept.

Variations in exposure levels over time between compounds and department were observed. For example, rubber dust exposures ranged from –8.8%/yr (crude materials and mixing, p<0.001) to +0.5%/yr (curing, p=0.01) while rubber fumes exposures declined between –8.3%/yr (crude materials and mixing, p<0.001) and –0.2%/yr (finishing, assembly, and miscellaneous, p=0.218).

JEM-estimates were linked to all cohort members for each year worked to calculate average annual and lifetime cumulative exposures (AAE, LCE), thereby allowing quantitative evaluation of exposure-response associations between 50-year occupational exposure and cancer mortality. AAE rubber dust exposures ranged between 0.3 mg/m³ (curing) and 36.3 mg/m³ (crude materials and mixing). Rubber fumes exposures range between 0.3 mg/m³ (finishing, assembly, and miscellaneous) and 5.4 mg/m³ (crude materials and mixing). LCE trends mirrored AAE results.