We investigated the impact of legislated early reporting incentives on claim processing time in two Australian workers’ compensation jurisdictions.

Methods A multiple baseline interrupted time series (ITS) design was used to evaluate incentive impact on claim processing time using Australian administrative workers’ compensation data. We compared median days between injury and lodgement time, lodgement and claim acceptance (decision) time, and total processing time in South Australia (SA) and Tasmania (TAS).

Results Total time was not immediately affected by incentives, though there was a significant downward trend of one-third a day per month in both jurisdictions relative to the comparator. Lodgement time decreased significantly in both jurisdictions, though the magnitude of impacts differed. A concurrent increase in decision time was observed in TAS but not in SA.

Conclusions Our findings suggest that employer focused early reporting incentives may have long-term impacts on claim processing time. However, we also observed unanticipated effects such as increases to insurer decision making time, as well as differential impacts between jurisdictions despite identical policy intent. While co-occurring events such as other legislative changes limit causal inferences, ITS analyses provide a useful approach for investigating the impact of legislative change on policy relevant outcomes in workers’ compensation systems.
between each exposure method (individual, full JEM and asymptomatic JEM) and hand pain (Prevalence ratios with asymptomatic JEM = 1.15–1.34; all p<0.05).

Conclusions A JEM using responses only from asymptomatic workers created more homogeneous exposure groups, but initial analyses showed no other significant evidence of biased exposure estimates due to symptoms. JEMs are a useful method of exposure assignment for some epidemiological studies of musculoskeletal disorders.

Poster Presentation

Injuries

0167 ASSOCIATION BETWEEN AMBIENT TEMPERATURE AND OCCUPATIONAL INJURY

Shih-Chun Pan, 1; Ching-Chun Huang, 1; Wei-Shan Chin, 1; Bing-Yu Chen, 2; Yue-Liang Leon Guo, 1; National Taiwan University, Taipei, Taiwan; 2National Taiwan University (NTU) and NTU Hospital, Taipei, Taiwan; 3National Health Research Institutes, Zhunan, Taiwan

10.1136/oemed-2017-104636.135

Background Exposure to high temperature has been linked to adverse effects including cardiovascular and renal functions. It was also proposed to diminish human performance capacity and increase accident risk. However, the effects of high temperature on occupational injury have not been extensively studied.

Objective The aim of this study was to determine the association between ambient temperature and occupational injury (OI) occurrence.

Material and Methods OI information was extracted from the National Health Insurance Research Database (NHIRD). Daily ambient temperature and relative humidity (RH) were obtained from the Taiwan EPA air monitoring station. The day of first time OI outpatient/emergency visits during 2006–2011 was used as the event day. The same weekdays of the month were used as the referent day. Time-stratified case-crossover design and conditional logistic regression was used to investigate the relationship between ambient temperature and OI outpatient visits, adjusting for RH.

Results There were 18,951 first time OI outpatient/emergency visits during 2006–2011. The odds ratio (OR) of OI outpatient visits associated with per interquartile range (7.7 degree centigrade) increase in ambient temperature of the same day (lag 0 day) was 1.15 (95% confidence interval, CI: 1.08–1.22). The ORs associated with lag1 (the day before visit day) to lag3 day was 1.13 (95% CI: 1.06–1.19), 1.11 (95% CI: 1.04–1.17), and 1.11 (95% CI: 1.02–1.14), respectively.

Conclusion Exposure to higher ambient temperature was associated with increased risk of OI outpatient visits.

Poster Presentation

Exposure Assessment

0168 QUANTIFICATION OF VIABLE STAPHYLOCOCCUS AUREUS AND VIABLE BACTERIA IN WORKPLACES BY PROPIDIUM MONOAZIDE WITH QPCR

Ching-Wen Chang, *, Meng-Hsuan Lin. National Taiwan University, Taipei, Taiwan

10.1136/oemed-2017-104636.136