methods to incorporate informal workers in exposure estimates, advancing upon what has been done in Central American CAREX projects. Countries with similar industrial composition, occupational carcinogen exposures, and/or worker demographics are collaborating on their national CAREX initiatives. New CAREX projects are underway in Peru and the Caribbean and Southern Cone.

Conclusions International collaboration has fostered the development of CAREX in LAC, where improved surveillance of occupational carcinogen exposures represents an important avenue for cancer prevention.

Poster Presentation
Cancer

0136 BREAST CANCER RISK ASSOCIATED WITH NIGHT SHIFT WORK: WHAT ARE THE META-ANALYSES TELLING US?

Manisha Pahwa, 2France Labrèche*, 1Paul Demers. 1Occupational Cancer Research Centre, Cancer Care Ontario, Toronto, Ontario, Canada; 2Institut de recherche Robert-Sauvé en santé et en sécurité du travail, Montréal, Québec, Canada; 3School of Public Health, Université de Montréal, Montréal, Québec, Canada; 4Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada

Objectives To compare results and assess the quality of recently published meta-analyses of night shift work and breast cancer risk.

Methods A comprehensive search was conducted for English or French-language meta-analyses published from 2010–2017 that included at least one meta-risk estimate (mRE) for breast cancer associated with any night shift work exposure metric and that were accompanied by a systematic literature review. mREs from each meta-analysis were ascertained and organised by various study characteristics. Assessments of heterogeneity and publication bias were also extracted. An eight-point checklist was used to evaluate quality.

Results Seven meta-analyses, published from 2013–2016, collectively included 30 cohort and case-control studies spanning 1996–2016. Five meta-analyses scored ≥6 points on the quality assessment checklist. Of these, mREs for ever/never night shift work exposure ranged from 1.15 (95% confidence interval [CI]: 1.05–1.25, n=9 studies) to 1.40 (95% CI: 1.13–1.73, n=9 studies). In these 5 reports, mREs for duration, frequency, and cumulative night shift work exposure were inconsistent. Meta-analyses of cohort, Asian, and more fully-adjusted studies generally resulted in lower mREs than case-control, European, American, or minimally-adjusted studies. Most used random effects models due to statistically significant between-study heterogeneity. Publication bias was not evident in any of the 5 meta-analyses.

Conclusions Substantial heterogeneity is to be expected in epidemiological studies done in various settings, and among diverse populations. Future evaluations of shift work carcinogenic potential need to incorporate high quality meta-analyses that better assess and account for individual study quality.
Oral Presentation
Methodology

0137 EXPOSURE-LAG-RESPONSE IN OCCUPATIONAL EPIDEMIOLOGY: APPLICATION OF DISTRIBUTED NON-LINEAR LAG MODELS IN A COHORT OF DIATOMACEOUS EARTH WORKERS EXPOSED TO CRYSTALLINE SILICA

1Andreas Neophytou*, 1Sally Pocciotto, 1Daniel Brown, 1Ellen Eisen, 1Harvey Checkoway, 1Sadie Costello. 1Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, USA; 2Department of Family and Preventive Medicine, University of California, San Diego, San Diego, CA, USA

Occupational exposures extending over a long working life can have complex relationships with health outcomes, as timing, duration, and intensity of exposure are all potentially relevant. Simple measures of cumulative, or average intensity of exposure typically considered in occupational studies may not fully capture these relationships. We applied distributed non-linear lag models to examine the association of crystalline silica exposures with mortality from lung cancer and non-malignant respiratory disease. We fitted Cox proportional hazard models for each cause of interest to data from a cohort study of 2342 California diatomaceous earth workers exposed to crystalline silica. Our models combined various functions for exposure-response and lag-response including linear, piecewise constant and spline functions. Models with a spline function for exposure-response and a constant term for the lag-response appeared to have the best fit for lung cancer, while models with spline functions for both exposure-response and lag-response had the best fit for non-malignant respiratory disease. Hazard ratios (HR) from these best fitting models corresponding to average daily exposures of 275 \(\mu g/m^3 \) during lag years 11–40 prior to the age of observed cases were 1.96 (95% confidence interval (CI) 0.95–4.06) and 2.01 (95% CI: 1.02–3.97) for the two outcomes respectively. HRs from simple models with linear exposure-response and constant lag-response terms for the same exposure scenario were 1.15 (95% CI: 0.88–1.49) and 1.21 (95% CI: 1.01–1.44) respectively. Occupational studies of longitudinal cohorts with detailed exposure histories could benefit from methods allowing for non-linearities and the disentanglement of intensity, duration and timing of exposure.

Oral Presentation
Risk Assessment

0138 POOLED URANIUM MINERS ANALYSIS: GOALS AND CHALLENGES

1David Richardson*, 2Michaela Kreuzer, 2Nora Fenske, 2Christina Sobotki, 3Minh Do, 3Paul Demers, 4Dominique Laurier, 4Estelle Rage, 5Mary Schubauer-Berigan, 6Ladislav Tomasek, 7Jon Samet, 8Lydia Zablotska. 1University of North Carolina, Chapel Hill, NC, USA; 2Federal Office for Radiation Protection, Neuherberg, Germany; 3Cancer Care Ontario, Toronto, Canada; 4Institute for Radiation Protection and Nuclear Safety, Fontenay-aux-Roses, France; 5National Institute for Occupational Safety and Health, Cincinnati, OH, USA; 6Radiation Protection Institute, Prague, Czech Republic; 7University of Southern California, Los Angeles, CA, USA; 8University of California, San Francisco, San Francisco, CA, USA

Epidemiological studies of uranium miners helped to establish radon as a human carcinogen. However, radon remains a leading occupational cause of cancer mortality, and many workers are exposed to radon at levels at which excess risk of lung cancer has been observed in occupational cohort studies. Prior pooled studies of underground miners provided important quantitative estimates of radon-associated lung cancer risk. Recently, efforts have been undertaken to strengthen uranium miner studies to address contemporary occupational safety concerns. New cohorts of underground miners have been enumerated, existing cohorts have been expanded, and follow-up of the major cohorts of miners has been extended substantially. An international collaborative study has been undertaken to combine information from many of the world’s most informative cohort studies of uranium miners; the combined study cohort encompasses more than 1 00 000 miners. This talk will describe the major themes of this project, the goals of the collaborators and the challenges that we have encountered to date. We will describe similarities and differences between findings from these key cohorts and identify some major gaps in current knowledge about radon’s effects on human health. Finally, we will discuss how international collaborative studies can strengthen our understanding of risks associated with occupational and environmental radon exposures.