The result of the above is that workers in GB are unjustly denied early detection of harm to their health, with prompt compensation and the opportunity to avoid further harmful exposures. Unless action is taken to address these issues, by accurately ascertaining the distribution and addressing the determinants of ODs, their elimination will not be achieved in GB.

Objective to examine the relations between personal exposure to PM2.5 and inflammatory and oxidation markers.

Methods We conducted a panel study with three sampling time points (baseline, two months follow-up, and four months follow-up) among 68 healthy non-smoking young adults from 3 different areas (Area A [residential and commercial area], Area B [industrial area] and Area C [scientific park]).

Results The average PM2.5 concentrations was 37.3 μg/m³ for personal sampling and 31.6 μg/m³ for nearest air quality monitoring station. Among them, the personal PM2.5 concentrations in B zone was significant highest than A and C zone. For the longitudinal study, we used linear Mixed-model was as follows: $Y \sim \alpha_0 + \alpha_z \text{Time}_{120} + \beta_1 Z_{\text{km}} + \beta_2 Z_{\text{km}} \text{Time}_{120} + \gamma \text{SDNN} + \epsilon_m + \epsilon_i + \epsilon_{it}$, where Z_{km} used four PM2.5 counting methods: (1) personal PM2.5 concentrations; (2) average personal PM2.5 concentrations at three sampling times; (3) average personal PM2.5 concentrations with area under the curve during 120 days; (4) average personal PM2.5 concentrations during 120 days ($> 35 \mu g/m^3 \text{ vs.} \leq 35 \mu g/m^3$). After adjustment for age, gender, smoking habits, sampling zones, height, weight, temperature, and relative humidity, we found that the Urinary N7-MeG/creatinine was significantly decreased with PM2.5 exposure concentrations, and Urinary HEL/creatinine was significantly increased with PM2.5 exposure concentrations by time, regardless of which PM2.5 exposure models were used. While we only used average personal PM2.5 concentrations at three sampling times, we found that SDNN and GPs were significantly increased with PM2.5 exposure concentrations by time.

Introduction New evidence suggests a physical activity (PA) health paradox, with positive health outcomes associated with high intensity leisure-time PA (LTPA), but negative health outcomes for those engaging in high intensity occupational PA (OPA). The aim of this study was to examine this paradox by systematically reviewing evidence on the association between high OPA and all-cause mortality.

Methods A systematic search of the literature was performed screening for eligible (peer-reviewed articles on prospective studies. Meta-analyses were performed assessing the association between high OPA and all-cause mortality.

Objective to examine the relations between personal exposure to PM2.5 and inflammatory and oxidation markers.

Methods We conducted a panel study with three sampling time points (baseline, two months follow-up, and four months follow-up) among 68 healthy non-smoking young adults from 3 different areas (Area A [residential and commercial area], Area B [industrial area] and Area C [scientific park]).

Results The average PM2.5 concentrations was 37.3 μg/m³ for personal sampling and 31.6 μg/m³ for nearest air quality monitoring station. Among them, the personal PM2.5 concentrations in B zone was significant highest than A and C zone. For the longitudinal study, we used linear Mixed-model was as follows: $Y \sim \alpha_0 + \alpha_z \text{Time}_{120} + \beta_1 Z_{\text{km}} + \beta_2 Z_{\text{km}} \text{Time}_{120} + \gamma \text{SDNN} + \epsilon_m + \epsilon_i + \epsilon_{it}$, where Z_{km} used four PM2.5 counting methods: (1) personal PM2.5 concentrations; (2) average personal PM2.5 concentrations at three sampling times; (3) average personal PM2.5 concentrations with area under the curve during 120 days; (4) average personal PM2.5 concentrations during 120 days ($> 35 \mu g/m^3 \text{ vs.} \leq 35 \mu g/m^3$). After adjustment for age, gender, smoking habits, sampling zones, height, weight, temperature, and relative humidity, we found that the Urinary N7-MeG/creatinine was significantly decreased with PM2.5 exposure concentrations, and Urinary HEL/creatinine was significantly increased with PM2.5 exposure concentrations by time, regardless of which PM2.5 exposure models were used. While we only used average personal PM2.5 concentrations at three sampling times, we found that SDNN and GPs were significantly increased with PM2.5 exposure concentrations by time.

Introduction New evidence suggests a physical activity (PA) health paradox, with positive health outcomes associated with high intensity leisure-time PA (LTPA), but negative health outcomes for those engaging in high intensity occupational PA (OPA). The aim of this study was to examine this paradox by systematically reviewing evidence on the association between high OPA and all-cause mortality.

Methods A systematic search of the literature was performed screening for eligible (peer-reviewed articles on prospective studies. Meta-analyses were performed assessing the association of high (compared to low) intensity OPA and all-cause mortality in males and females, estimating pooled hazard ratios (HR) with 95% confidence intervals (95% CI).