Abstracts

Poster Presentation
Exposure assessment

0211 OCCUPATIONAL HEAT STRESS AND HEAT STRAIN ASSESSMENT USING CLIMATE SERVICE INFORMATION

Chuansi Gao, 1 Yakev Kuklane, 1 The-Olo Östergren, 1 Jord Kjellstrom, 1 Thermal Environment Laboratory, Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Faculty of Engineering, Lund University, Lund, Sweden; 2 Social Medicine and Global Health, Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden; 3 Centre for Technology Research and Innovation (CETRI) Ltd, Lemesos, Cyprus

Global warming will unquestionably increase the impact of heat on individuals. The increasing prevalence of this environmental health risk requires the improvement of exposure assessment linked to meteorological data. Reliable assessments of heat stress and heat strain will help to reveal the size of the problem and design appropriate interventions at individual, workplace and societal level. However, it is common that air temperature is widely used as a single parameter in epidemiological studies on the effect of heat. The evaluation of occupational heat stress requires measurement of four thermal climate factors (air temperature, humidity, air velocity and heat radiation); available weather station data may serve this purpose. However, the use of meteorological data for such assessment is limited because weather stations do not traditionally and directly measure some important climate factors, e.g. solar radiation. In addition, local workplace environmental conditions such as local heat sources, physical workload related metabolic heat production within the human body, and clothing properties, all affect the exchange of heat between the body and the environment. A robust occupational heat stress and heat strain index should properly address all these factors. This article reviews and highlights a number of selected indices, indicating their strengths and weaknesses in relation to meteorological data, local workplace environments, body heat production and the use of protective clothing. These heat stress and heat strain indices include Wet Bulb Globe Temperature, Discomfort Index, Predicted Heat Strain index, and Universal Thermal Climate Index. Relevant preventive strategies for alleviating heat strain are proposed.

Oral Presentation
Respiratory

0413 SHORT-TERM AND SUB-CHRONIC EFFECTS OF TRAFFIC-RELATED BLACK CARBON ON SMALL AIRWAY OBSTRUCTION IN METRO MANILA TRAFFIC ENFORCERS

Emmanuel S Baja, 1 Godofreda V Dalmacion, 1 Antonio D Ligsay, 2 Noor Edward P Duarte, 2 Melk A Paskay, 1 Institute of Clinical Epidemiology, National Institutes of Health, University of the Philippines-Manila, Manila, The Philippines; 3 Department of Clinical Epidemiology, College of Medicine, University of the Philippines-Manila, Manila, The Philippines; 4 Department of Pharmacology and Toxicology, College of Medicine, University of the Philippines-Manila, Manila, The Philippines; 5 Clinical Research Section, St. Luke’s College of Medicine, Quezon City, The Philippines; 6 Microbiology Section, Department of Laboratories, University of the Philippines-Philippine General Hospital, Manila, The Philippines; 7 St. Luke’s Medical Center, Quezon City, The Philippines

Introduction Exposure to traffic-related black carbon (BC) has been linked to decreased forced expiratory flow (FEF25–75%) and Tiffeneau-Pinelli Index (FEV1/FVC), markers of airway obstruction, in several epidemiological studies. We evaluated whether short-term and sub-chronic exposures to BC on the road is linked with markers of airway obstruction in a cohort of traffic enforcers.

Methods We studied repeated measurements of FEF25–75% and FEV1/FVC on 158 traffic enforcers from the Metropolitan Manila Development Authority (MMDA) Health Study using mixed-effects models with random intercepts. We fitted a quadratic
constrained distributed lag model to estimate the cumulative effect on FEV1/FVC and FEF25–75% of ambient BC concentration during the 7 days before the visit. We also evaluated effect modification by participant characteristics using separated regression models and interaction terms.

Results BC was related to decreased FEF25–75% and FEV1/FVC. A 10 µg/m³ change in BC cumulative during the 7 days before the visit was associated with decreased FEF25–75% [4.2% change; 95% confidence interval (CI): -6.9 to -1.6] and decreased FEV1/FVC (3.0% change; 95% CI: -3.9 to -2.0), respectively. Correspondingly, we found similar associations with FEF25–75% and FEV1/FVC for a 10 µg/m³ change in BC that occurred 1 day before the visit (1.5% change and 0.5% change). Associations between BC and FEF25–75% and FEV1/FVC were stronger among traffic enforcers who were male, who were never smokers, or who were obese.

Conclusions Traffic-related BC may decrease FEF25–75% and FEV1/FVC among traffic enforcers who are obese, or non-smoking individuals; a male traffic enforcer increases this effect.

Poster Presentation
Exposure assessment

0416 RELATIONSHIP BETWEEN EXTRACELLULAR IRON AND CIRCULATING INFLAMMATION MARKERS IN PLASMA OF MINNESOTA TACONITE WORKERS
Shannon M Sullivan*, Bin Ma, Bruce H Alexander, Jeffrey H Mandel, Irina Stepanov. University of Minnesota, Minneapolis, Minnesota, USA
10.1136/oemed-2017-104636.422

Background Higher rates of mesothelioma, pneumoconiosis, lung cancer, and heart disease mortality have been reported in Minnesota taconite (iron ore) workers compared to the rest of the state population. Oxidative stress and inflammation are important underlying mechanisms in cancer and cardiovascular disease, and exposure to silica containing dust with a high iron content may play a key role in the observed elevated health risks.

Methods In this study, we compared ICP-MS-measured plasma iron concentrations to levels of circulating inflammatory markers (cytokines and chemokines) in 130 taconite workers using linear regression analysis adjusting for covariates.

Results Plasma iron levels varied substantially, ranging from 49 to 636 µg/dL, with a mean of 107 (±60) µg/dL. After adjusting for age, body mass index, gender and smoking status, plasma iron levels were positively associated with the levels of chemokines RANTES (p=0.06), TARC (p=0.04), and MDC (p=0.02).

Discussion These findings lend some support to the hypothesis that exposure to iron in taconite dust may lead to elevated levels of extracellular iron both in the lung and in the general circulation, producing reactive oxygen species and catalyzing oxidative stress. Given that TARC and MDC have been prospectively associated with lung cancer risk in other research, there is a need to better understand the relationship between extracellular iron levels and these biomarkers in taconite workers. Further analyses to assess other metrics of iron exposure from taconite dust components on plasma iron concentrations and measures of oxidative stress are warranted.

Poster Presentation
Intervention studies

0450 PREVENTING AND PROMOTING MUSCULOSKELETAL HEALTH AT THE WORKPLACE THROUGH THE DESIGN AND EVALUATION OF AN INNOVATIVE MULTICOMPONENT INTERVENTION: THE INTEVAL_Spain PROJECT
1,2Conxol Serra*, 1,3Sergio Vargas-Prada, 2,3Merci Soler, 1,3Jose Maria Ramada, 2Pilar Peña, 2Anna Amat, 1Ewan B Macdonald, 2Antoni Merelles, 7Ana Maria Garcia. 1Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain; 2CIBER in Epidemiology and Public Health (CIBERESP), Spain; 3CIAL-Centre of Research in Occupational Health, University Pompeu Fabra, Barcelona, Spain; 7Unidad Central de Contingencias Comunes, Mutua Ateneo, Barcelona, Spain; 4Occupational Health Service, Parc de Salut Mar, Barcelona, Spain; 5Occupational Health Service, Corporación Parc Taulí, Sabadell, Spain; 6Healthy Working Lives Group, University of Glasgow, Glasgow, UK; 7Direcció General de Salut Pública. Conselleria de Sanitat Universal i Salut Pública. Generalitat Valenciana, Valencia, Spain; 8Dirección General de Salud Pública. Conselleria de Sanitat Universal i Salut Pública. Generalitat Valenciana, Valencia, Spain
10.1136/oemed-2017-104636.423

Objectives Musculoskeletal disorders (MSD) are main cause of work absence, reducing sustainability of working trajectories. The objective of INTEVAL Spain project is to assess the effectiveness of a multifactorial intervention at the workplace to prevent MSD.

Methods The intervention comprises evidence-based primary (participatory ergonomics-PE), secondary and tertiary prevention (case management-CM), and health promotion targeted to MSD. All components are integrated and require full coordination. A cluster randomized trial with a late intervention control group is being implemented to evaluate its effectiveness. Quantitative and qualitative information is being obtained from databases of participating companies, questionnaires, pre-post learning tests, satisfaction surveys, project records and focus groups.

Results Eight clusters of nurses and aides (n=473) employed at two hospitals were selected and randomly distributed into intervention (n=4) and control (n=4). A prevalence of 80% of back and/or neck pain and 70% of high physical demands at baseline were observed. A champion was recruited, together with 8 managers, 33 referent workers and 3 workers’ representatives who volunteered to be clusters leaders. A total of 105 proposals for ergonomic improvements are being managed by operational groups. CM is based on the Scottish EASY model, and five main services are offered, combined with health promotion activities: rehabilitation, MSD health beliefs counseling, targeted cognitive behavioral therapy, Nordic walking, Mediterranean diet, emotional training and mindfulness.

Conclusions The intervention is being implemented with high levels of participation and acceptance. If it proves to be cost-effective, it will provide updated, relevant and innovative evidence for MSD preventive strategies at the workplace.