Other

INDUSTRY, OCCUPATION AND SEX DIFFERENCES IN WORKERS’ EXPOSURE TO ENDOCRINE DISRUPTING METALS IN AN AMERICAN AND A CANADIAN SURVEY

1,2Sabrina Gravel*, 1,3Jérôme Lavoué, 1,2France Labrèche. 1School of Public Health, Université de Montréal, Montreal, Qc, Canada; 2Institut de recherche Robert-Sauvé en santé et en sécurité du travail, Montreal, Qc, Canada; 3Centre de recherche du Centre hospitalier de l’Université de Montréal, Montreal, Qc, Canada

These analyses explore whether a gradient of exposure to four potential endocrine disrupting metals can be detected in workers of different occupational groups and industries, in two national population surveys.

Blood levels of lead (PbB), cadmium (CdB) and mercury (HgB), as well as urinary levels of arsenic (AsU) were measured in the National Health And Nutrition Examination Survey (NHANES) 2003–2010 and the Canadian Health Measures Survey (CHMS) 2007–2013. Data from participants aged 16–65 were analysed to identify industries and occupational groups with higher levels. T-tests and one-way ANOVAs were performed to explore differences in the biomarkers’ levels according to industry, occupation and sex.

Geometric means (GMs) in NHANES and CHMS were respectively 1.24 and 1.13 µg/dL for PbB, 0.32 and 0.34 µg/L for CdB, 0.96 and 0.78 µg/L for HgB, and 9.96 and 10.61 µg/L for AsU. In NHANES, men had higher levels of PbB (mean difference (MD)=0.75 µg/L, 95% CI:0.70–0.81) and HgB (MD=0.27; 95% CI:0.18–0.36), and there were no differences between men and women for CdB and AsU. In both surveys, the Utilities and Construction industry group had higher GMs of PbB (NHANES: 1.98 µg/dL; CHMS: 1.54 µg/dL) and CdB (NHANES: 0.35 µg/L; CHMS: 0.45 µg/L), and occupations in Health Care and Social Services had the highest HgB GMs (NHANES: 1.16 µg/L; CHMS: 0.97 µg/L).

Results show that certain occupational groups may incur higher exposures to potential endocrine disrupting metals. This should raise attention on workers, considering increasing evidence on the possible effects of such exposures in the general population.

Neurological Effects

EXPOSURE TO DIESEL ENGINE EXHAUST AND THE RISK OF ALS

1,2Susan Peters*, 1Calvin Ge, 1Jan Veldink, 1Leonard van den Berg, 2Roel Vermeulen. 1University Medical Centre Utrecht, Utrecht, The Netherlands; 2Utrecht University, Utrecht, The Netherlands

Background Only few risk factors have been identified for amyotrophic lateral sclerosis (ALS). Higher risks were reported for various occupations (e.g. farmers, construction workers), but responsible exposures remain largely unknown. We investigated the association between occupational exposure to diesel engine exhaust and sporadic ALS in a population-based study with detailed information on possible confounders.

Methods An ongoing ALS case-control study is being conducted in the Netherlands since 2006, and we here present data for 2006–2014. Lifetime occupational histories and lifestyle factors were collected via questionnaires. A general population job-exposure matrix was assigned to estimate exposure to diesel engine exhaust. All exposure variables were estimated up to two years before survey to account for any changes due to diesel engine exhaust. All exposure variables were estimated up to two years before survey to account for any changes due to diesel engine exhaust.