Long-term exposure to outdoor air pollution and the incidence of chronic obstructive pulmonary disease in a national English cohort

R W Atkinson,1 I M Carey,1 A J Kent,2 T P van Staa,3,4 H R Anderson,1,5 D G Cook1

ABSTRACT

Objectives The role of outdoor air pollution in the incidence of chronic obstructive pulmonary disease (COPD) remains unclear. We investigated this question using a large, nationally representative cohort based on primary care records linked to hospital admissions.

Methods A cohort of 812 063 patients aged 40–89 years registered with 205 English general practices in 2002 without a COPD diagnosis was followed from 2003 to 2007. First COPD diagnoses recorded either by a general practitioner (GP) or on admission to hospital were identified. Annual average concentrations in 2002 for particulate matter with an aerodynamic diameter <10 μm (PM10) and <2.5 μm (PM2.5), nitrogen dioxide (NO2), ozone and sulfur dioxide (SO2) at 1 km2 resolution were estimated from emission-based dispersion models. Hazard ratios (HRs) per interquartile resolution were estimated from emission-based dispersion models. Hazard ratios (HRs) per interquartile

resolution were estimated from emission-based dispersion models. Hazard ratios (HRs) per interquartile range change were estimated from Cox models adjusting for age, sex, smoking, body mass index and area-level deprivation.

Results 16 034 participants (1.92%) received a COPD diagnosis from their GP and 2910 participants (0.35%) were admitted to hospital for COPD. After adjustment, HRs for GP recorded COPD and PM10, PM2.5 and NO2 were close to unity, positive for SO2 (HR=1.07 (95% CI 1.03 to 1.11) per 2.2 μg/m3) and negative for ozone (HR=0.94 (0.89 to 1.00) per 3 μg/m3). For admissions HRs for PM2.5 and NO2 remained positive (HRs=1.05 (0.98 to 1.13) and 1.06 (0.98 to 1.15) per 1.9 μg/m3 and 10.1 μg/m3, respectively).

Conclusions This large population-based cohort study found limited, inconclusive evidence for associations between air pollution and COPD incidence. Further work, utilising improved estimates of air pollution exposure for cohort participants, longer follow-up times and more precise disease definition, is required to clarify the role of air pollution in the initiation of COPD.

INTRODUCTION

Cohort studies have demonstrated associations between long-term exposure to outdoor air pollution and adverse health effects.1 Such studies, exemplified by the American Cancer Society cohort,2,3 have tended to focus on death as the health outcome with particular emphasis on fine particles and cardiovascular disease.4 Cohort studies of respiratory mortality have also tended to report positive associations but individually have lacked statistical power.4 Few studies have focused on chronic obstructive pulmonary disease (COPD).6 A recent report on the global impact of PM2.5 (mass of particulates with aerodynamic diameter <2.5 μm) on COPD was reliant on only three studies, all from the USA and all using mortality as the outcome.7

The possibility that air pollution is a risk factor for the initiation of COPD is important given the ubiquitous nature of the exposure and the substantial burden of the disease on individuals and healthcare services. Recent reviews of the literature have been, at the most, only suggestive of a role of ambient air pollution,6,8 and a recent multicentre cohort study reported limited evidence of associations with air pollution.9 Few studies have used objective measures of disease9 or routine databases such as hospital admissions records to identify cases.10

We have previously used a nationally representative cohort of adults in England to demonstrate positive associations between annual concentrations of air pollution and respiratory mortality including COPD.5 In this paper, we use a subset of the same cohort to look at the incidence of COPD over time identified from general practitioner (GP) records and from hospital admission records linked with the GP record.
METHODS
The Clinical Practice Research Datalink (CPRD) is a large, validated primary care database that has been collecting anonymous patient data from participating UK general practices since 1987. It includes a full longitudinal medical record for each registered patient containing coded information on diagnoses, prescriptions and tests carried out within the practice. The Hospital Episode Statistics (HES) database routinely records clinical, patient, administrative and geographical information on all National Health Service (NHS)-funded inpatient episodes in the UK. Subject to the practice’s approval, the CPRD patient data are routinely linked to HES by a ‘trusted third party’ via their NHS number, sex, date of birth and postcode and to the Index of Multiple Deprivation (IMD), a small area measure of deprivation used in England for allocation of resources.

We identified 205 English practices, recording high-quality data according to CPRD internal standards (eg, non-contiguous follow-up, incomplete data recording), which had been linked to HES data. From these, we identified 836 557 subjects aged 40–89 years fully registered for at least 1 year on 1/1/2003. Subjects with COPD Read codes on their GP record prior to 2003 (n=24 494) were excluded leaving 812 063 for analysis. Subjects with COPD Read codes on their GP record prior to 2003 (n=24 494) were excluded leaving 812 063 for analysis. From these, we identified 836 557 subjects aged 40–89 years fully registered for at least 1 year on 1/1/2003. Subjects with COPD Read codes on their GP record prior to 2003 were identified from: (1) GP records by Read codes indicating a diagnosis of COPD and (2) hospital admissions records by International Classification of Disease codes (ICD-10 Version:2010) (J41–44) indicating a primary diagnosis of COPD. As a sensitivity analysis, we extended the exclusion criteria to include other markers of chronic respiratory disease recorded by the GP including asthma and regular inhaler prescribing (all Read codes available from authors on request). Figure 1 illustrates the cohort selection and exclusions.

Annual mean concentrations in 2002 of particles with a median aerodynamic diameter of <10 μm (PM10), <2.5 μm (PM2.5), sulfur dioxide (SO2), nitrogen dioxide (NO2) and ozone (O3) for 1 km grid squares covering England were linked anonymously by a ‘trusted third party’ from a grid centroid to the nearest residential postcode centroid for each patient. Details of the dispersion models and the model validation including other years are provided in the online supplementary material. Briefly, the models for PM10, PM2.5, NO2 and SO2 were constructed by estimating emissions from a number of sources (eg, road transport or power generation) before calculating pollution concentrations using a dispersion model. O3 maps were constructed by interpolating data from rural monitoring stations and adjusting for effects of altitude and NOx emissions in urban areas.

Model validation was assessed using data from monitoring sites in the national network and from verification sites operated by NETCEN (part of AEA Technology Environment) in conjunction with local authorities and not part of the national network. Model validation was assessed using data from monitoring sites in the national network and from verification sites operated by NETCEN (part of AEA Technology Environment) in conjunction with local authorities and not part of the national network. Model validation was assessed using data from monitoring sites in the national network and from verification sites operated by NETCEN (part of AEA Technology Environment) in conjunction with local authorities and not part of the national network. Model validation was assessed using data from monitoring sites in the national network and from verification sites operated by NETCEN (part of AEA Technology Environment) in conjunction with local authorities and not part of the national network. Model validation was assessed using data from monitoring sites in the national network and from verification sites operated by NETCEN (part of AEA Technology Environment) in conjunction with local authorities and not part of the national network.

Postcode linkage to all pollutants was successful in 99% of patients (table 1). IQR values were lowest for PM2.5 (1.9 μg/m3) and highest for NO2 (10.7 μg/m3). There was significant variation in modelled pollution concentrations by practice region and IMD (p<0.001). The highest concentrations of particles and NO2 were observed in London, whereas the highest concentrations of SO2 and O3 occurred in the north and south, respectively. Areas with a lower SES were associated with higher concentrations for all pollutants except O3. Annual concentrations of PM10 and PM2.5 were strongly correlated with NO2 (r=0.8), moderately correlated with SO2 (r=0.5) and negatively correlated with O3 (r=−0.4).

RESULTS
Postcode linkage to all pollutants was successful in 99% of patients (table 1). IQR values were lowest for PM2.5 (1.9 μg/m3) and highest for NO2 (10.7 μg/m3). There was significant variation in modelled pollution concentrations by practice region and IMD (p<0.001). The highest concentrations of particles and NO2 were observed in London, whereas the highest concentrations of SO2 and O3 occurred in the north and south, respectively. Areas with a lower SES were associated with higher concentrations for all pollutants except O3. Annual concentrations of PM10 and PM2.5 were strongly correlated with NO2 (r=0.8), moderately correlated with SO2 (r=0.5) and negatively correlated with O3 (r=−0.4).
Of the 812 063 cohort participants, 16 034 (1.92%) received a COPD diagnosis on their GP record and 2910 (0.35%) were admitted to hospital for COPD during the follow-up period 2003–2007 (figure 1). Of the 2910 patients admitted to hospital with a diagnosis of COPD, 1860 (64%) received a diagnosis of COPD on their GP record by the end of 2007. Extending the exclusion criteria for GP diagnosed COPD to patients with other previously recorded chronic respiratory diseases, such as asthma, reduced the cohort to 694 189 patients, with 8893 (0.13%) received a hospital diagnosis of COPD.

Table shows the incidence of GP and HES recorded COPD stratified by sex, age, smoking status, BMI, practice region and IMD. Incidence of GP diagnosed COPD was higher in men than in women (2.2% vs 1.8%), but the sex ratio was similar for hospital admissions. Incident cases of COPD increased with age, with only a small reduction in the oldest group (80–89 years) for GP diagnosed COPD. Increasing smoking intensity at baseline, both current and historical, strongly predicted COPD incidence. There was also a strong gradient with IMD, both for GP and hospital recorded COPD, with increasing incidence of both outcomes as deprivation increased. For example, using GP diagnoses, patients in the most deprived decile had an incidence rate almost 4.18 times higher than those in the least deprived decile (4.18 ±1.13%), while for hospital admissions this ratio was almost 5 (0.88% vs 0.18%). The pattern with IMD was observed across all smoking categories (data not shown). The strong associations with IMD were likely to account for some of the regional variation in COPD incidence, with higher rates in the north compared to the south. However, even among the most deprived IMD decile, north-south differences were still apparent (4.6% vs 3.4%).

The associations between an IQR change in assigned air pollution concentration in 2002 and a 5-year incidence of COPD recorded on the GP record and for admission to hospital are quantified in a series of HRs in table 3. All pollutants except ozone were positively associated with an increased risk for incident GP recorded COPD when adjusted for age and sex alone. Adjustment for smoking and BMI attenuated all associations, with further adjustment for IMD reducing nearly all associations to the null. The main exception was for SO2 where a 2.2 m\(g/m^3\) increment was associated with an HR=1.07 (95% CI: 1.03 to 1.11). Alternative adjustments for IMD based on individual components (income, education and employment) produced similar reductions in HRs (data not shown). Extending the exclusion criteria to also exclude patients with other previously recorded respiratory disease such as asthma strengthened associations for PM\(_{10}\) and PM\(_{2.5}\); however, CIs still included unity. In two-pollutant models, the SO2 association remained robust to adjustment for other pollutants (see online supplementary material table S3). Finally, alternative frailty models using a random effect to account for practice clustering did not materially alter our conclusions (data not shown).

Analyses using incidence based on an admission to hospital for COPD generally produced associations with air pollution greater in magnitude than those seen with GP diagnosis alone (table 3). Again, adjustment for covariates and IMD in particular markedly reduced associations, with all 95% CIs including unity. For example, IQR increments in PM\(_{2.5}\) (1.9 \(mg/m^3\)), SO2 (2.2 \(mg/m^3\)) and NO2 (10.7 \(mg/m^3\)) were associated with HRs of

Table 1: Summary of assigned pollutant concentrations in 2002 for participants with no diagnosis of COPD by end of 2002 (n=812 063)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Assigned annual average concentration in 2002 ((\mu g/m^3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM(_{10})</td>
<td>807 401 (99)</td>
</tr>
<tr>
<td>PM(_{2.5})</td>
<td>807 401 (99)</td>
</tr>
<tr>
<td>SO2</td>
<td>800 360 (99)</td>
</tr>
<tr>
<td>NO2</td>
<td>807 000 (99)</td>
</tr>
<tr>
<td>O3</td>
<td>801 380 (99)</td>
</tr>
</tbody>
</table>

Correlation* between pollutants

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>PM(_{2.5})</th>
<th>SO2</th>
<th>NO2</th>
<th>O3</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM(_{10})</td>
<td>0.99</td>
<td>0.45</td>
<td>0.84</td>
<td>-0.40</td>
</tr>
<tr>
<td>SO2</td>
<td>0.45</td>
<td>0.85</td>
<td>0.38</td>
<td>-0.39</td>
</tr>
<tr>
<td>NO2</td>
<td>0.84</td>
<td>0.38</td>
<td>-0.41</td>
<td>-0.47</td>
</tr>
</tbody>
</table>

* Spearman’s rank correlation coefficient.

COPD, chronic obstructive pulmonary disease; IMD, Index of Multiple Deprivation; IQR, Interquartile range.

Modified IMD quintile means (SD)

<table>
<thead>
<tr>
<th>IMD Quintile</th>
<th>No. with pollution linkage (%)</th>
<th>Mean concentration (SD)</th>
<th>IQR (SD)</th>
<th>Test for heterogeneity</th>
<th>Adjusted HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Most deprived)</td>
<td>21.0 (2.2)</td>
<td>19.8 (2.3)</td>
<td>3.0</td>
<td>p<0.001</td>
<td>1.0 (1.0)</td>
</tr>
<tr>
<td>2</td>
<td>21.1 (2.6)</td>
<td>20.4 (2.6)</td>
<td>2.9</td>
<td>p<0.001</td>
<td>1.0 (1.0)</td>
</tr>
<tr>
<td>3</td>
<td>20.0 (2.3)</td>
<td>19.5 (2.6)</td>
<td>2.8</td>
<td>p<0.001</td>
<td>1.0 (1.0)</td>
</tr>
<tr>
<td>4</td>
<td>19.3 (2.4)</td>
<td>20.0 (2.3)</td>
<td>2.7</td>
<td>p<0.001</td>
<td>1.0 (1.0)</td>
</tr>
<tr>
<td>5</td>
<td>19.3 (2.3)</td>
<td>19.3 (2.3)</td>
<td>2.6</td>
<td>p<0.001</td>
<td>1.0 (1.0)</td>
</tr>
<tr>
<td>6</td>
<td>19.3 (2.4)</td>
<td>19.3 (2.4)</td>
<td>2.5</td>
<td>p<0.001</td>
<td>1.0 (1.0)</td>
</tr>
<tr>
<td>7</td>
<td>19.3 (2.3)</td>
<td>19.3 (2.3)</td>
<td>2.4</td>
<td>p<0.001</td>
<td>1.0 (1.0)</td>
</tr>
<tr>
<td>8</td>
<td>19.4 (1.9)</td>
<td>19.4 (1.9)</td>
<td>2.3</td>
<td>p<0.001</td>
<td>1.0 (1.0)</td>
</tr>
<tr>
<td>9</td>
<td>19.3 (2.3)</td>
<td>19.3 (2.3)</td>
<td>2.2</td>
<td>p<0.001</td>
<td>1.0 (1.0)</td>
</tr>
<tr>
<td>10 (Least deprived)</td>
<td>19.6 (1.5)</td>
<td>19.6 (1.5)</td>
<td>2.1</td>
<td>p<0.001</td>
<td>1.0 (1.0)</td>
</tr>
</tbody>
</table>

Table 3 shows the incidence of GP and HES recorded COPD stratified by sex, age, smoking status, BMI, practice region and IMD. Incidence of GP diagnosed COPD was higher in men than in women (2.2% vs 1.8%), but the sex ratio was similar for hospital admissions. Incidence cases of COPD increased with age, with only a small reduction in the oldest group (80–89 years) for GP diagnosed COPD. Increasing smoking intensity at baseline, both current and historical, strongly predicted COPD incidence. There was also a strong gradient with IMD, both for GP and hospital recorded COPD, with increasing incidence of both outcomes as deprivation increased. For example, using GP diagnoses, patients in the most deprived decile had an incidence rate almost 4.18 times higher than those in the least deprived decile (4.18 ±1.13%), while for hospital admissions this ratio was almost 5 (0.88% vs 0.18%). The pattern with IMD was observed across all smoking categories (data not shown). The strong associations with IMD were likely to account for some of the regional variation in COPD incidence, with higher rates in the north compared to the south. However, even among the most deprived IMD decile, north-south differences were still apparent (4.6% vs 3.4%).

The associations between an IQR change in assigned air pollution concentration in 2002 and a 5-year incidence of COPD recorded on the GP record and for admission to hospital are quantified in a series of HRs in table 3. All pollutants except ozone were positively associated with an increased risk for incident GP recorded COPD when adjusted for age and sex alone. Adjustment for smoking and BMI attenuated all associations, with further adjustment for IMD reducing nearly all associations to the null. The main exception was for SO2 where a 2.2 m\(g/m^3\) increment was associated with an HR=1.07 (95% CI: 1.03 to 1.11). Alternative adjustments for IMD based on individual components (income, education and employment) produced similar reductions in HRs (data not shown). Extending the exclusion criteria to also exclude patients with other previously recorded respiratory disease such as asthma strengthened associations for PM\(_{10}\) and PM\(_{2.5}\); however, CIs still included unity. In two-pollutant models, the SO2 association remained robust to adjustment for other pollutants (see online supplementary material table S3). Finally, alternative frailty models using a random effect to account for practice clustering did not materially alter our conclusions (data not shown).

Analyses using incidence based on an admission to hospital for COPD generally produced associations with air pollution greater in magnitude than those seen with GP diagnosis alone (table 3). Again, adjustment for covariates and IMD in particular markedly reduced associations, with all 95% CIs including unity. For example, IQR increments in PM\(_{2.5}\) (1.9 \(mg/m^3\)), SO2 (2.2 \(mg/m^3\)) and NO2 (10.7 \(mg/m^3\)) were associated with HRs of
1.05 (95% CI 0.98 to 1.13), 1.01 (95% CI 0.97 to 1.07) and 1.06 (95% CI 0.98 to 1.15), respectively. The HR for ozone was 0.96 (95% CI 0.90 to 1.02). Restricting the analysis to admissions in participants with COPD confirmed by their GP did not materially alter our findings.

We stratified the adjusted HRs in table 3 by IMD deciles (figure 2). For PM$_{2.5}$ and NO$_2$, there was no consistent evidence of a positive association across different deprivation groups using either GP diagnoses or hospital admission as the outcome. For SO$_2$, the association consistently produced an HR>1 for GP diagnoses, but was less uniform for hospital admissions. The reverse was true for O$_3$ where the HR was generally <1 across the IMD deciles. Stratifying the analyses by other covariates such as age and smoking did not reveal any other patterns (data not shown).

DISCUSSION

In this cohort study of general practice patients, we investigated the relationship between estimates of long-term exposure to outdoor air pollution and the incidence of COPD recorded by GPs and by admission to hospital. While all pollutants except ozone were positively associated with increased risk for incident GP recorded COPD, adjustment for smoking, BMI and IMD in particular reduced associations towards the null except for SO$_2$. Associations with COPD hospital admissions were larger and remained positive for PM$_{2.5}$, PM$_{10}$ and NO$_2$ and negative for O$_3$ after full adjustment, although all CIs included unity. Sensitivity analyses based on excluding asthmatic patients from the analysis, or only counting hospital admissions with a diagnosis confirmed on the GP record, did not alter our findings materially.

Early longitudinal studies of air pollution and the development of COPD used respiratory symptoms to identify participants with COPD, while others used lung function measurements, such as forced expiratory volume in the first second (FEV$_1$/forced vital capacity (FVC)) ratio or the GOLD criterion. A very recent reanalysis and meta-analysis of four European cohorts (in total 6530 participants and including a UK cohort) used FEV$_1$/FVC and the GOLD criterion to define...
COPD and found positive, but not statistically significant, associations with NO2 and PM10. Epidemiological studies designed to identify the small associations between air pollution and health outcomes require disease recording in large populations, which precludes the use of individual lung function measurements. Only a small number of studies have used routine administrative databases such as hospital admissions records to identify COPD cases. Andersen et al. studied 57,000 participants in a Danish cohort recording their first admission to hospital for COPD between 1993 and 2006. COPD incidence was associated with 35-year estimated residential mean NO2 concentrations (HR=1.08; 95% CI, 1.02 to 1.14, per IQR of 5.8 μg/m3)—an association larger for the same increment in our study (HR=1.03). Gan et al. also studied hospitalisations for COPD in a cohort of almost 500,000 residents in metropolitan Vancouver aged 45–85 years and without a previous physician diagnosis of COPD at baseline. Residential exposures to NO2 estimated from land use regression models were not associated

Table 3

<table>
<thead>
<tr>
<th>Adjustment factors</th>
<th>PM$_{10}$ (n=807 401)</th>
<th>PM$_{2.5}$ (n=807 401)</th>
<th>SO$_2$ (n=800 360)</th>
<th>NO$_2$ (n=807 000)</th>
<th>O$_3$ (n=801 380)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outcome=First diagnosis of COPD on GP record in 2003–2007, Exclusions=Any COPD recorded on GP record prior to 2003</td>
<td>HR 95% CI</td>
</tr>
<tr>
<td>Age and sex</td>
<td>1.10 1.02 to 1.19</td>
<td>1.12 1.04 to 1.21</td>
<td>1.14 1.09 to 1.19</td>
<td>1.17 1.08 to 1.26</td>
<td>0.88 0.82 to 0.94</td>
</tr>
<tr>
<td>+Smoking and BMI</td>
<td>1.06 0.99 to 1.13</td>
<td>1.07 1.00 to 1.15</td>
<td>1.11 1.07 to 1.16</td>
<td>1.11 1.03 to 1.20</td>
<td>0.91 0.85 to 0.97</td>
</tr>
<tr>
<td>+IMD</td>
<td>0.99 0.93 to 1.05</td>
<td>1.00 0.94 to 1.06</td>
<td>1.07 1.03 to 1.11</td>
<td>1.03 0.96 to 1.11</td>
<td>0.94 0.89 to 1.00</td>
</tr>
<tr>
<td>Full model (10 unit increase)</td>
<td>0.97 0.79 to 1.18</td>
<td>0.97 0.71 to 1.34</td>
<td>1.36 1.14 to 1.62</td>
<td>1.03 0.96 to 1.10</td>
<td>0.82 0.67 to 0.99</td>
</tr>
<tr>
<td>Outcome=First diagnosis of COPD on GP record in 2003–2007, Exclusions=Any Markers of Respiratory Disease prior to 2003*</td>
<td>HR 95% CI</td>
</tr>
<tr>
<td>Age and sex</td>
<td>1.21 1.11 to 1.32</td>
<td>1.23 1.13 to 1.34</td>
<td>1.11 1.05 to 1.17</td>
<td>1.25 1.14 to 1.36</td>
<td>0.87 0.80 to 0.95</td>
</tr>
<tr>
<td>+Smoking and BMI</td>
<td>1.15 1.06 to 1.24</td>
<td>1.16 1.08 to 1.26</td>
<td>1.08 1.02 to 1.13</td>
<td>1.17 1.08 to 1.28</td>
<td>0.90 0.84 to 0.97</td>
</tr>
<tr>
<td>+IMD</td>
<td>1.05 0.98 to 1.12</td>
<td>1.05 0.98 to 1.13</td>
<td>1.01 0.97 to 1.07</td>
<td>1.06 0.98 to 1.15</td>
<td>0.96 0.90 to 1.02</td>
</tr>
<tr>
<td>Full model (10 unit increase)</td>
<td>1.17 0.93 to 1.46</td>
<td>1.31 0.92 to 1.86</td>
<td>1.07 0.86 to 1.33</td>
<td>1.06 0.98 to 1.14</td>
<td>0.87 0.69 to 1.08</td>
</tr>
<tr>
<td>Outcome=First Hospital Admission for COPD in 2003–2007, Exclusions=Any COPD recorded on GP record prior to 2003</td>
<td>HR 95% CI</td>
</tr>
<tr>
<td>Age and sex</td>
<td>1.21 1.11 to 1.32</td>
<td>1.23 1.13 to 1.34</td>
<td>1.11 1.05 to 1.17</td>
<td>1.25 1.14 to 1.36</td>
<td>0.87 0.80 to 0.95</td>
</tr>
<tr>
<td>+Smoking and BMI</td>
<td>1.15 1.06 to 1.24</td>
<td>1.16 1.08 to 1.26</td>
<td>1.08 1.02 to 1.13</td>
<td>1.17 1.08 to 1.28</td>
<td>0.90 0.84 to 0.97</td>
</tr>
<tr>
<td>+IMD</td>
<td>1.05 0.98 to 1.12</td>
<td>1.05 0.98 to 1.13</td>
<td>1.01 0.97 to 1.07</td>
<td>1.06 0.98 to 1.15</td>
<td>0.96 0.90 to 1.02</td>
</tr>
<tr>
<td>Full model (10 unit increase)</td>
<td>1.17 0.93 to 1.46</td>
<td>1.31 0.92 to 1.86</td>
<td>1.07 0.86 to 1.33</td>
<td>1.06 0.98 to 1.14</td>
<td>0.87 0.69 to 1.08</td>
</tr>
</tbody>
</table>

Hazard ratios are for IQR change in pollutant level unless stated (PM$_{10}$=3.0 μg/m3, PM$_{2.5}$=1.9 μg/m3, SO$_2$=2.2 μg/m3, NO$_2$=10.7 μg/m3, O$_3$=3.0 μg/m3). Practice is accounted for in the above models by the sandwich estimator to produce robust standard errors.

*The numbers of patients in the analyses with this additional exclusion were: PM$_{10}$/PM$_{2.5}$ n=690 102, SO$_2$ n=684 261, NO$_2$ n=689 767, O$_3$ n=684 261. BMI, body mass index; COPD, chronic obstructive pulmonary disease; GP, general practitioner; HES, hospital episode statistics; IMD, Index of Multiple Deprivation.

Figure 2 Hazard ratios and 95% confidence intervals for the incidence of Chronic Obstructive Pulmonary Disease for an interquartile change in each pollutant stratified by Index of Multiple Deprivation deciles.
with COPD hospitalisations (HR=1.00). They also found no evidence of an association with PM$_{2.5}$ (HR=1.02 (95% CI 0.98 to 1.06) per 1.58 μg/m3 increment, which compares to HR=1.04 for the same increment in our study.

Our finding of an association between long-term exposure to SO$_2$ and COPD is, to the best of our knowledge, new, although we note that this finding is specific to GP recorded COPD and hospital admission when confirmed by the GP. SO$_2$ has been associated with respiratory mortality in some, but not all, cohort studies. Short-term exposure time-series studies have indicated associations between daily concentrations of SO$_2$ and emergency hospital admissions for COPD but not GP consultations for lower respiratory disease excluding asthma. Given the lack of a plausible hypothesis linking current low levels of SO$_2$ to health, it is possible that our finding reflects historical exposure to higher concentrations of SO$_2$, or that our SO$_2$ model, which showed an association with cardiovascular disease in a previous analysis, is providing a geographical proxy of poor overall health or acts as a marker for more toxic substances produced by the combustion of sulfur-containing fossil fuel.

We also found that associations with ozone were consistently negative, which we have seen previously with cardiovascular disease and mortality. While this is in part explained by negative correlations between ozone and the other pollutants, the smaller variation of ozone concentration by area probably results in it better representing regional levels. An analysis confined to the months in which ozone levels are highest might have been informative, but we were unable to stratify by season.

In our study, we used two distinct data sources to identify COPD over time—GP diagnoses and hospital admissions. The use of a nationally representative UK primary care database to study COPD incidence has been established, but some important changes that might affect recording have taken place. One of the most notable changes was the introduction of the Quality and Outcomes Framework in 2004 which required GPs to confirm their COPD diagnoses by spirometry from 2006 onwards. This change may have temporarily introduced additional variability in the recording of diagnoses across practices. However, the introduction of spirometry should improve diagnostic certainty and lead to improved and more specific outcome measures for use in epidemiological studies of air pollution where large sample sizes are required to detect relatively small effects.

We also used hospital admissions for COPD as an outcome. Andersen et al noted the appeal of using an objective measure such as first-ever hospital admission assessed objectively from a nationwide register but recognised that such patients represented only those with severe or poorly controlled COPD. Hence, admissions are unlikely to represent the real burden of COPD in the population. In this respect, our study had the benefit of two large, quality assured, independent sources of data to identify incidence: hospital admissions records to identify participants at the severe end of the spectrum of disease and primary care records incorporating participants with COPD who had not yet required admission to hospital. However, the consistency in recording of a COPD diagnosis during the two was not complete—36% of incident hospital admissions for COPD were not confirmed by a corresponding GP diagnosis during the study. A sensitivity analysis restricting hospital admissions to those corroborated by a subsequent GP diagnosis of COPD did not alter substantively the associations observed with hospital admissions. While the use of large-scale databases allows us to detect small effects in large populations, the lack of consistency between the two outcomes limits the conclusions that can be drawn from each analysis.

We found that adjustment for deprivation had a substantial effect on all HRs, moving all associations towards unity and statistical non-significance. The direction of this adjustment is not surprising as lower SES has been shown to be related to poorer air quality and respiratory function in England previously. Adjustment for deprivation is important as it is associated with air pollution as well as other factors that might be correlated with COPD outcomes. We were limited by relying on census measures of deprivation based on a geographical area of approximately 1500 people; however, neighbourhood SES indicators can be an acceptable proxy for individual measures. It is possible that in urban areas the IMD may represent fine-scale variability in actual pollution levels not represented by our modelled estimates. For example, within the modelled 1×1 km area, patients living closer to busy roads are assigned identical exposure as those further away, but may have different deprivation profiles. While this may raise the possibility that we have overadjusted in our models, when we stratified our analysis by IMD deciles, we found little evidence of consistent effects of air pollution within the separate groups and no evidence of greater effects in areas of low socioeconomic characteristics. It is also possible that some of the IMD adjustment may be acting as a proxy for further smoking history, as our smoking variable was unable to calculate lifetime pack years.

We have discussed previously the performance and validation (see online supplementary material) of our air pollution dispersion models. We note that the validity of the modelled exposure data (as measured by R2 statistics in relation to monitored data) varied among the pollutants and from year to year. In 2002, our chosen year for exposure assignment, model validation was good for NO$_2$, moderate for PM$_{10}$ and poor for SO$_2$, although this varied substantially from year to year (R$^2=0.23$–0.45 at national network sites and 0–0.6 at the verification sites). Models for ozone demonstrated good to reasonable model performance. The difficulty in modelling PM and SO$_2$ has been well documented and we note also that alternative pollution models have reported similar performance when applied to the UK. Other sensitivity analysis using exposure estimates averaged over a number of years, which include better validation statistics, largely confirmed our findings based on the 2002 data only including associations with SO$_2$ (data not shown). Nonetheless, we believe that the poorer model performance for PM$_{10}$ and SO$_2$ relative to NO$_2$ should be taken into consideration in the overall assessment of our results.

In comparison with other cohort studies of COPD, our pollution estimates differed in terms of spatial resolution (1×1 km grids vs residential, postcode) and historical exposure (35 and 5 years). The question of historical versus recent exposure has been considered previously in relation to mortality in the American Cancer Society cohort and no strong evidence was found to support earlier over more recent pollution exposure estimates. Annual estimates of pollution concentrations from our model for other years around 2002 suggested strong correlations over time, so a single exposure year provides an acceptable proxy of longer exposure over time. However, we note that our estimates of pollution exposure may not adequately represent cumulative exposure over prior decades, especially where concentrations have generally been falling over time. A further limitation of our study was the relatively short follow-up period (up to 5 years), although this was mitigated to some extent by the size of the study population and number of events (>16 000 events).
and >2900 incident COPD cases recorded by a GP and admission, respectively.

In a previous analysis of the same cohort, we found associations with COPD and respiratory mortality, which were comparable with those for hospitalisations reported in this case; however, owing to the relatively smaller number of mortality outcomes (less than 30%), the precision of our estimates was reduced. Hospital admissions may not represent a true incident point but may instead indicate the role of air pollution in exacerbating COPD. This hypothesis is supported by evidence from short-term exposure time-series studies which have found positive associations between daily concentrations of air pollution to increase in numbers of COPD hospital admissions and mortality in urban populations.

In conclusion, this large population-based cohort study found only limited, inconclusive evidence for associations between air pollution concentrations and COPD incidence and inconsistency between results for COPD identified from GP records and from hospital admissions. Given the ubiquitous nature of the exposure and the substantial social and economic burden of the disease, further work utilising improved estimates of air pollution exposure for cohort participants, individual markers of SES, longer follow-up times and a more precise disease definition is required to clarify the role of air pollution in the initiation of COPD.

Acknowledgements The views expressed in this paper are those of the authors and do not reflect the official policy or position of the MHRA. CPRD is owned by the Secretary of State of the UK Department of Health and operates within the MHRA. CPRD has received funding from the MHRA, Welcome Trust, Medical Research Council, NIHR Health Technology Assessment programme, Innovative Medicine Initiative, UK Department of Health, Technology Strategy Board, Seventh Framework Programme EU, various universities, contract research organisations and pharmaceutical companies.

Contributors RWA, IMC, AJK, TPvS, DGC and HRA contributed in conception and design of the study. IMC, RWA, DGC and HRA contributed in analysis, interpretation and drafting of the manuscript.

Competing interests None.

Ethics approval None.

Funding and design of the study. IMC, RWA, DGC and HRA contributed in analysis, RWA, IMC, AJK, TPvS, DGC and HRA contributed in the conception and design of the study. IMC, RWA, DGC and HRA contributed in analysis, interpretation and drafting of the manuscript.

REFERENCES

22 Department of Health. Quantitative systematic review of short term associations between ambient air pollution (particulate matter, ozone, nitrogen dioxide, sulphur dioxide and carbon monoxide), and mortality and morbidity. St George’s, University of London, 2007.

Supplementary Material

Long-term exposure to outdoor air pollution and the incidence of chronic obstructive pulmonary disease in a national English cohort

RW Atkinson¹, IM Carey¹, AJ Kent², TP van Staa³, HR Anderson¹⁵, DG Cook¹

Contents

Methods: The emission inventory, modelling and validation of models for estimating exposure to air pollutants

Table 1 Model validation statistics (R^2) at national network and verification sites, 2002-2007

Table 2 Summary statistics for comparison between modelled and measured ozone concentrations (maximum daily 8-hour mean) using number of days exceeding 120 µg m⁻³

Table 3 Two-pollutant models showing hazard ratios summarizing the change in risk of incident COPD in 2003-2007 associated with an interquartile change in each pollutant
Methods: The emission inventory, modelling and validation of models for estimating exposure to air pollutants

Introduction
Ricardo-AEA is contracted by Department for Environment, Food and Rural Affairs, a government department responsible for policy and regulations on the environment in the UK. Ricardo-AEA have developed and refined dispersion models for reporting to both the UK Government and the European Commission and for policy formulation by the UK Government. The models use the national emission inventories and seeks to model some of the physical and chemical processes in the atmosphere. The model represents dispersion over different terrain types using a variety of dispersion kernels for different land uses. The models provide a national scale output (across the UK) at 1x1km resolution and provide historical back-log of data for multiple pollutants and for multiple years over the last decade. These contribute to the UK Government’s officially reported concentrations to the EU which are a combination of modelled concentrations and concentrations from national monitoring networks. These data have a well-established provenance within the UK air pollution community and their validity for use in epidemiology has been previously established1,2.

Emission inventory
Emission estimates provided by the UK National Atmospheric Emission Inventory (NAEI)3, provide the basis for the air pollution dispersion models. The Inventory is funded by the Government and provides detailed information on air pollutant emissions from a range of sources including point sources (e.g. industrial sites) and from area sources (e.g. roads, domestic combustion and smaller industrial sites) which are typically derived from a combination of activity statistics (such as fuel consumption) and known emission factors (for example, emission of a given pollutant per tonne of a given fuel burnt or kilometre travelled). Emissions from road traffic on major roads are estimated from a combination of traffic activity data (daily flows for different vehicle types on each of approximately 19,000 major road links), vehicle fleet characteristics (age, relevant emission standard) and emission factors (emissions per km per vehicle). These emission estimates are then aggregated into sectors such as domestic heating, road traffic emissions and industrial emissions. The UK total emission estimates for
each activity are then distributed across 1 km x 1 km squares covering the whole of the UK. The spatial patterns of emissions are derived from proxy information such as population or employment statistics for a number of activities and are fully explained in the most recent UK Emission Mapping Methodology report^4.

Air Pollution Modeling

Oxides of nitrogen

Concentrations of NO\textsubscript{X} and NO\textsubscript{2} were estimated using the Pollution Climate Mapping model5-7.

Modelling NO\textsubscript{X} concentrations

Annual mean NO\textsubscript{X} concentrations were calculated by summing the estimated concentrations for the following components:

- Distant sources (characterised by the rural background concentration, interpolated from measurements at rural sites)
- Point sources (calculated using an air dispersion model)
- Local area sources (calculated using a kernel based air dispersion model)

The area source model has been calibrated using data from the national automatic monitoring networks for the relevant year.

Modelling NO\textsubscript{2} concentrations

To estimate NO\textsubscript{2} concentrations, modelled NO\textsubscript{X} concentrations derived from the approach outlined above are converted to NO\textsubscript{2} using an oxidant partitioning model which describes the complex inter-relationships of NO, NO\textsubscript{2} and ozone as a set of chemically coupled species8. This approach provides additional insights into the factors controlling ambient levels of NO\textsubscript{2} (including the emission of primary NO\textsubscript{2}), and how they may vary with NO\textsubscript{X} concentration.

Particulate matter

PM\textsubscript{10} and PM\textsubscript{2.5} concentrations were estimated using the Pollution Climate Mapping model7,9. Annual mean PM concentrations were calculated by summing the estimated concentrations for the following components:
• Secondary inorganic aerosol (derived by scaling measurements of PM, SO₄, NO₃)
• Point sources of primary particles (modelled using an air dispersion model and UK national emissions estimates from the National Atmospheric Emission Inventory)
• Area sources of primary particles (modelled using a dispersion kernel, which is derived using an air dispersion model and emissions estimates from the National Atmospheric Emission Inventory)
• Long-range transport primary particles (modelled with the TRACK model, a Lagrangian statistical model)
• Residual (assumed to be a constant value)

The area source model was calibrated using data from the national automatic monitoring networks for the relevant year.

Sulphur dioxide
SO₂ concentration estimates were estimated using the Pollution Climate Mapping model. Annual mean SO₂ concentrations were calculated by summing the estimated concentrations for the following components:
• Point sources (calculated using an air dispersion model)
• Local area sources (calculated using a kernel based air dispersion model)

Point sources (such as power stations and refineries) are the dominant contributor to ground level concentrations across most of the UK. A number of major point sources are modelled using emissions information and activity profiles provided directly by power station operators.

Ozone
The empirical mapping methods used to calculate the maps of annual mean ozone concentration have been described by Stedman and Kent as a further development of the methods presented by Coyle at al.

Mapping ozone concentrations
The maps of annual mean concentration were calculated by interpolating monitoring data from rural monitoring sites for the well-mixed period in the afternoon (12:00 to 18:00). Two corrections were then applied: to correct for altitude and for the effect of urban environments. The altitude correction was applied to take account of the effects
of topography on ozone levels. Topographic effects are important for some ozone metrics, such as the annual mean, because of the disconnection of a shallow boundary layer from air aloft during the night at lowland locations. Surface ozone concentrations are lower at night in these locations due to a combination of dry deposition and titration with NO emissions. This effect is much less marked at higher altitudes and at coastal locations, where wind is generally stronger and a shallow boundary layer does not form. An urban decrement (the difference between the ozone concentration in an urban area and the regional rural value) was then calculated using the oxidant partitioning model of Jenkin. Maps of regional oxidant were calculated as the sum of altitude corrected ozone and rural NO\textsubscript{2} as interpolated from measurements at rural sites. The partitioning of oxidant between ozone and NO\textsubscript{2} was then calculated as a function of local NO\textsubscript{X} concentrations, as modelled using the approach described above. Maps of annual mean ozone concentration were calculated for all of the 1 km x 1 km squares in the UK by subtracting this urban decrement from the estimates of rural concentrations.

Model Calibration
Model calibration is achieved using national network sites applied only to the local (within ~15km) area source emissions (i.e. emissions provided by the NAEI on a 1x1 km grid). Point source emissions are modelled explicitly using a dispersion model (ADMS) which is populated using the NAEI, meteorological data purchased from the UK Met Office and stack parameters gathered from EA permits. The un-calibrated area source emissions are put through a GIS-based dispersion kernel (also generated using ADMS and Met Office data) and then the output at national network monitoring sites is compared with the measured concentrations from those sites. The measured concentrations are amended first by subtracting the modelled point source contribution (and other pollutant specific components such as long range transport primary particulate matter) at each site so that we are comparing like with like (i.e. the modelled area sources are being fairly compared with the area source component of the measured concentrations. This comparison is used to compose the calibration plot from which the calibration factor for the UK is derived. Some sites will be better represented than others because a single calibration factor is being applied to the whole map. The calibration is then applied by scaling up the un-calibrated dispersed (i.e. dispersion kernel applied) NAEI gridded emissions. This calibrated area source grid is then added
to the small and large point source grids and any other pollutant specific grids (e.g. long range transport primary, secondary organic aerosol, secondary inorganic aerosol, sea salt, rural NO\textsubscript{X}) to make the final grid of estimated ambient concentrations.

Model Validation
Table 1 gives the model validation statistics (R2) for annual concentrations of PM\textsubscript{10}, SO\textsubscript{2} and NO\textsubscript{2} in 2002-2007 at national network and verification sites, as well as the numbers of monitors used in these assessments. Our main analyses were based on using 2002 levels exclusively, an a priori decision made independent of model validation. However we have included extra years here to given a more complete picture of model performance. The R2 values based upon verification sites (details of the Verification Sites (VS) used in the ‘calibration club’ are given in Stedman13) provide the strongest indication of the performance of the model. The data from the National Network (NN) monitoring sites are used to calibrate the model. However they do provide some indication of model performance since these data are used to provide a single, universal calibration factor (as opposed to adjusting the model to ensure good agreement specifically at the locations for which measured data are available) that is subsequently applied to all 1x1 km grids.

- For PM\textsubscript{10}, while there was general agreement at NN sites and VS over time, model validation overall was only moderate (e.g. in 2002 R2 =0.29 for NN, R2 =0.46 for VS).

- Due to the limited number of monitoring sites measuring PM\textsubscript{2.5} prior to 2009, model validation statistics for PM\textsubscript{2.5} for 2002 was not available. However, the modelling for PM\textsubscript{10} and PM\textsubscript{2.5} is carried out in parallel and the same general methodology is used and many of the same components so model performance for PM\textsubscript{10} and PM\textsubscript{2.5} is similar. In 2009 separate model validation for PM\textsubscript{2.5} was possible and model agreement was very similar to what had been reported previously for PM\textsubscript{10} (e.g. R2 =0.23-0.71 for NN)14.

- For SO\textsubscript{2}, the R2 for 2002 were 0.39 at the NN sites, but 0 at the VS, though this was based on only 17 sites. The level of agreement varies substantially from year to
year (from 0.23 to 0.45 at NN sites 0 to 0.6 at the VS sites), and generally improved when calculation were based on more national network and verification sites.

- The R2 statistics for NO\textsubscript{2} were good for both the NN (>0.80) and VS sites (>0.57) and were consistently good year on year.

- Modelled ozone concentrations were verified using number of days exceeding 120 µg/m3 – the appropriate statistic for policy purposes. The performance of our models – aggregated over 2002-2004 and 2005-2007 are shown in Table 2, demonstrating good model performance at the NN sites (R2>0.7) and moderate performance at the VS (R2=0.24-0.48).
Table 1 Model validation statistics (R^2) at national network and verification sites, 2002-2007

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Network</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO$_2$</td>
<td>NN</td>
<td>0.39</td>
<td>0.45</td>
<td>0.23</td>
<td>0.33</td>
<td>0.29</td>
<td>0.37</td>
</tr>
<tr>
<td># sites</td>
<td></td>
<td>127</td>
<td>108</td>
<td>96</td>
<td>100</td>
<td>98</td>
<td>66</td>
</tr>
<tr>
<td>VS</td>
<td></td>
<td>0.00</td>
<td>0.56</td>
<td>0.14</td>
<td>0.00</td>
<td>0.04</td>
<td>0.59</td>
</tr>
<tr>
<td># sites</td>
<td></td>
<td>17</td>
<td>43</td>
<td>20</td>
<td>31</td>
<td>27</td>
<td>45</td>
</tr>
<tr>
<td>NO$_2$</td>
<td>NN</td>
<td>0.80</td>
<td>0.83</td>
<td>0.87</td>
<td>0.90</td>
<td>0.88</td>
<td>0.87</td>
</tr>
<tr>
<td># sites</td>
<td></td>
<td>62</td>
<td>64</td>
<td>69</td>
<td>62</td>
<td>74</td>
<td>77</td>
</tr>
<tr>
<td>VS</td>
<td></td>
<td>0.57</td>
<td>0.87</td>
<td>0.82</td>
<td>0.75</td>
<td>0.85</td>
<td>0.83</td>
</tr>
<tr>
<td># sites</td>
<td></td>
<td>24</td>
<td>19</td>
<td>21</td>
<td>33</td>
<td>36</td>
<td>80</td>
</tr>
<tr>
<td>PM$_{10}$</td>
<td>NN</td>
<td>0.29</td>
<td>0.25</td>
<td>0.40</td>
<td>0.28</td>
<td>0.32*</td>
<td>0.48s</td>
</tr>
<tr>
<td># sites</td>
<td></td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>50</td>
<td>48</td>
<td>31</td>
</tr>
<tr>
<td>VS</td>
<td></td>
<td>0.46</td>
<td>0.37</td>
<td>0.11</td>
<td>0.13</td>
<td>0.34</td>
<td>0.36</td>
</tr>
<tr>
<td># sites</td>
<td></td>
<td>27</td>
<td>20</td>
<td>37</td>
<td>39</td>
<td>63</td>
<td>53</td>
</tr>
</tbody>
</table>

Notes: NN - National Network monitoring stations; VS Verification Sites; $^*0.62$ at 6 gravimetric sites, $^s0.83$ at 10 sites

Table 2 Summary statistics for comparisons between the number of days on which modelled and measured daily 8-hour mean ozone exceeded 120 µg/m3

<table>
<thead>
<tr>
<th>Period</th>
<th>Mean of measurements (days)</th>
<th>Mean of model estimates (days)</th>
<th>R^2</th>
<th>No. sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Network</td>
<td>2002-4</td>
<td>6.4</td>
<td>6.5</td>
<td>0.71</td>
</tr>
<tr>
<td>Verification Sites</td>
<td>2002-4</td>
<td>10.3</td>
<td>8.5</td>
<td>0.48</td>
</tr>
<tr>
<td>National Network</td>
<td>2005-7</td>
<td>6.1</td>
<td>6.0</td>
<td>0.76</td>
</tr>
<tr>
<td>Verification Sites</td>
<td>2005-7</td>
<td>8.3</td>
<td>7.2</td>
<td>0.24</td>
</tr>
</tbody>
</table>

Table 3 Two-pollutant models showing hazard ratios summarizing the change in risk of incident COPD in 2003-2007 associated with an interquartile change in each pollutant

<table>
<thead>
<tr>
<th>Adjustment Factors</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PM$_{10}$</td>
<td>PM$_{2.5}$</td>
<td>SO$_2$</td>
<td>NO$_2$</td>
<td>O$_3$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HR</td>
<td>HR</td>
<td>HR</td>
<td>HR</td>
<td>HR</td>
<td>HR</td>
</tr>
<tr>
<td></td>
<td>95%</td>
<td>95%</td>
<td>95%</td>
<td>95%</td>
<td>95%</td>
<td></td>
</tr>
</tbody>
</table>

Outcome=First COPD recording on GP record in 2003-7, Exclusions=Any COPD recorded on GP record prior to 2003

+ IMD

Further adjusted for PM$_{10}$	0.99	0.93-1.05	0.99	0.92-1.07	1.07	1.03-1.11	1.03	0.96-1.10	0.94	0.89-1.00
Further adjusted for SO$_2$	0.94	0.88-1.01	0.93	0.85-1.01	-	-	0.99	0.92-1.07	0.97	0.91-1.03
Further adjusted for NO$_2$	0.91	0.81-1.01	0.90	0.77-1.04	1.07	1.03-1.12	-	-	0.94	0.88-1.00
Further adjusted for O$_3$	0.97	0.91-1.03	0.97	0.89-1.05	1.06	1.01-1.11	1.00	0.93-1.08	-	-

Outcome=First COPD recording on HES record in 2003-7, Exclusions=Any COPD recorded on GP record prior to 2003

+ IMD

Further adjusted for PM$_{10}$	-	-	-	-	1.00	0.94-1.05	1.05	0.91-1.20	0.97	0.90-1.04
Further adjusted for SO$_2$	1.05	0.98-1.12	1.08	0.98-1.19	-	-	1.06	0.97-1.15	0.95	0.89-1.02
Further adjusted for NO$_2$	1.02	0.90-1.14	1.04	0.89-1.21	1.00	0.95-1.05	-	-	0.97	0.90-1.04
Further adjusted for O$_3$	1.03	0.96-1.11	1.05	0.96-1.15	1.00	0.95-1.06	1.04	0.95-1.13	-	-

Notes: Effects are for IQR change in exposure level unless stated (PM$_{10}$=3.0µg/m3, PM$_{2.5}$=1.9µg/m3, SO$_2$=2.2 µg/m3, NO$_2$=10.7µg/m3, O$_3$=3.0 µg/m3). Practice is accounted for in above models by the sandwich estimator to produce robust standard errors (Cox model). The numbers of patients in the analyses with this additional exclusion were: PM$_{10}$/PM$_{2.5}$ n=690,102, SO$_2$ n=684,261, NO$_2$ n=689,767, O$_3$ n=684,261.

