lying around the house; assisting a client with using a sharp; and disposing of sharps. Poisson regression modelling was used to identify important predictors of handling or encountering used sharps. By linking these results to national data on HC visits and clients, we estimated the frequency with which these hazardous conditions occur to HC aides nationwide.

Results

Although not authorised to do so, 7% of aides assisted clients to use a sharp. Aides were much more likely to encounter sharps if they were employed directly by clients/families than if employed through an agency. Other important determinants of sharps exposure included client medical conditions like diabetes, and aide characteristics including professional certification.

Conclusions

The results are being investigated further through focus groups of HC aides and used to develop preventive interventions.

THE NIEHS GULF STUDY: QUESTIONNAIRE RESULTS AND USE OF JOB EXPOSURE MATRICES TO LINK INHALATION AND DERMAL EXPOSURE ESTIMATES TO STUDY SUBJECTS

1Patricia Stewart, 1Mark Stenzel, 1Sudipto Banerjee, 1Aaron Blair, 1John Cherie, 6Lawrence Engel, 1Caroline Groth, 2Ivan Hyrsh, 2Richard Knok, 2Wendy McDowell, 6Melanie Ng Gorman, 3Gunumththy Ramachandran, 6Dale Sandler, 3Anne Skewenhoek.

1Stewart Exposure Assessments, LLC, Arlington, VA, USA; 2Exposure Assessment Applications, LLC, Arlington, VA, USA; 3Division of Biostatistics, University of Minnesota, Minneapolis, MN, USA; 4National Cancer Institute, Gaithersburg, USA; 5Institute of Occupational Medicine, Edinburgh, UK; 6Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; 7Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA; 8Department of Environmental Health Sciences, University of Minnesota, Minneapolis, MN, USA; 9McDowell Safety and Health Svcs, LLC, Sanger, TX, USA

10.1136/oemed-2014-102362.114

Objectives

To describe the activities of the GuLF STUDY participants responding to the Deepwater Horizon oil release in the Gulf of Mexico in 2010 and the process of developing job exposure matrices (JEMs) of exposure group/location/time period combinations to link inhalation and dermal exposures to the participants.

Method

Information on activities performed by the participants in the NIEHS epidemiologic study were collected via questionnaire with details on almost 100 clean-up activities (e.g., skimming); dates; amount of time spent performing these activities; and the geographic location where these activities were performed. The questionnaire also collected information on frequency of exposure to various oil components onto various parts of the body and the use of protective equipment. JEMs of inhalation and dermal exposure estimates have been developed for total hydrocarbons for unique exposure group/vessel/time period combinations.

Results

Preliminary data indicate over 6000 study subjects reported patrolling the beaches, reported removing tar balls, and reported removing oil or oily sand. Over 5000 collected oily plants, a similar number bagged oily material and over 4000 decontaminated vessels or equipment of oil. Approximately one-third of the study subjects worked on the water; about 5% worked near the wellhead.

Conclusions

Study subjects performed a variety of activities at multiple locations that resulted in different levels of inhalation and dermal estimates. These estimates will be used in the evaluation of exposure-response relationships in the epidemiologic study.

BURDEN OF CANCER ATTRIBUTABLE TO OCCUPATIONAL DIESEL ENGINE EXHAUST EXPOSURE IN CANADA

Joanne Kim, 2Cheryl E Peters, 3Chris McLeod, 5Sally Hutchings, 1Lesley Rushton, 1Manisha Pahwa, 4Paul A Demers. 1Occupational Cancer Research Centre, Toronto, ON, Canada; 2University of British Columbia, Vancouver, BC, Canada; 3Imperial College London, London, UK; 4University of Toronto, Toronto, ON, Canada

10.1136/oemed-2014-102362.115

Objectives

To estimate the number of new lung cancers in Canada attributable to occupational diesel engine exhaust (DEE), which IARC classified as a definite human carcinogen in 2012. This is part of a larger effort to estimate the current burden of occupational cancers in Canada.

Method

Relative risks were selected from two recent studies of miners and truckers with quantitative exposure-response. CAREX Canada estimates of exposure prevalence and level by detailed industry and occupation were supplemented by a literature search for DEE measurement data. For each exposure group, RR were assigned based upon the estimated mean exposure. Employment trends of industries and occupations were based upon census data from multiple years. Annual Labour Force Survey data were used to attribute age- and tenure-distribution, as well as short-term turnover characteristics. Survival was adjusted to age at entry into the exposed cohort during the risk exposure period 1961–2001. The attributable fraction (AF) for DEE-related lung cancers will be calculated by province, sex, industry and occupation.

Results

Approximately 1.4 million workers were exposed to DEE during the risk exposure period. The initial estimated AFs for DEE-related lung cancers are: 4.92% for males, 0.29% for females, and 2.70% overall.

Conclusions

These burden estimates are somewhat higher than recent estimates from other groups (1.3–1.8%). They account for the most recent evidence for the risk of lung cancer from occupational DEE exposure, as well as detailed historical exposure assessment and labour force trends. Sensitivity analyses are underway to determine the influential assumptions.

DEVELOPMENT OF A PREDICTIVE MODEL FOR ESTIMATING GAMMA RADIATION EXPOSURES AMONG ONTARIO UINMERS

Minh Do. Occupational Cancer Research Centre, Toronto, Ontario, Canada

10.1136/oemed-2014-102362.116

Objectives

The objective of this study is to develop and validate a predictive model for estimating gamma radiation exposure for miners working in uranium mines between 1981 and 1985.

Method

The dose prediction model was developed and validated using multiple linear regression. To aid in model development, 70% random sample of workers were used in the model development (i.e., Training Sample) while the remainder 30% (i.e., Test Sample) was used to determine model performance. A stepwise approach was used to select variables into the model. Criteria for retaining the variables in the model was based on a p-value of <=0.15. Model fit was assessed using adjusted R-square. Co-linearity was determined by the magnitude of the variance inflation factor (VIF). Variables with VIF greater than 3.0 were removed from the model. In addition, SAS procedure ROBUSTREG was used to minimise the effects of outliers and