Corresponding values above the WHO threshold of 20 μg/m³ would be 51.73 attributable deaths (12.58 cardiovascular and 4.17 respiratory) 13.60 cardiac, 5.37 cerebrovascular and 49.13 respiratory hospital admissions.

Conclusions The expected exposure appears to have a limited impact on health. Future monitoring of the actual exposure levels during the progress of the works will allow evaluating the accuracy of those estimates.

Objectives Genetic susceptibility in work-related lung cancer aetiology could have an important public health impact. Few studies have previously evaluated this issue, with inconsistent results. We aimed to investigate interactions between exposure to occupational carcinogens and genetic polymorphisms in lung cancer aetiology, adopting a systematic integrated approach.

Method EAGLE, a population-based case-control study, enrolled 2100 lung cancer cases and 2120 controls (Italy, 2002–2005). Lifetime work histories were collected for 4059 subjects and translated into exposure to six occupational carcinogens (asbestos, silica, polycyclic aromatic hydrocarbons, diesel exhausts, chromium, and nickel) using a job-exposure matrix. We selected 23 candidate genes among phase II metabolic genes reported in association with lung cancer susceptibility and/or metabolism of selected carcinogens. 298 tagging single nucleotide polymorphisms (SNPs) were genotyped on 4050 subjects. We tested for interaction within smoking-adjusted logistic regressions where SNPs were modelled individually, by gene group (using gene scores and haplotypes), and by pathways. False discovery rate (FDR) was used to account for multiple testing. Gene expression changes in lung tissues were studied for SNPs-carcinogens significant interactions.

Results Asbestos had the highest impact on lung cancer burden, we restricted interaction tests to this carcinogen. GSTM4 polymorphisms consistently showed positive interactions across different analysis levels, especially by SNP group score (FDR-adjusted p-value for interaction < 0.0001). No significant genetic “signal” by asbestos exposure was found at lung tissue level.

Conclusions GSTM4 polymorphisms may play a role in asbestos-related lung cancer aetiology. These findings are biologically plausible and have never previously been reported; they should therefore be validated in further studies.

Objectives Estimates of burden of disease are generally based on population attributable fractions (PAFs) calculated for a whole population. However, the age structure of an exposed group has an impact on these estimates, because disease rates vary by age and the exposed population may be younger than the national population in the estimation year.

Method To account for this, PAFs can be calculated by age, and applied separately by age to national incidence data. We have adopted our risk period methodology, which takes account of latency to estimate numbers exposed to a causative agent using Levin’s formula for PAF, to estimate a workforce turnover factor by age group, which accounts for the age structure of an exposed population. To estimate age-specific RRs from unit relative risks per year of exposure, the link between age and duration of exposure can be modelled using Monte-Carlo methods.

Results We show the effect of estimating the burden of lung cancer due to occupational exposure to respirable crystalline silica for Britain using PAF estimates which do or do not take age into account. Taking account of age and assuming recruitment between ages 15–44, there were 1188 lung cancer registrations in males in 2010, or 798 without accounting for age, or 636 vs. 804 assuming recruitment between ages 15–24. The extension to using age-specific RRs is demonstrated for occupational asbestos-related lung cancers.

Conclusions Given the above results, and although highly dependent on assumptions made about workforce ages, there is clearly a case to be made to estimate PAFs by age.